States, hysteresis and equilibrium properties of one-dimensional chains of magnetic dipoles
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 82-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theoretical study of the magnetic properties of one-dimensional arrays of ferromagnetic nanoparticles was conducted. It is shown that in the Stoner-Wohlfarth model, depending on distance between the dipole-dipole interacting particles, the chain can show either soft magnetic or hard magnetic properties and behavior may vary from a Stoner-Wohlfarth-like to an Ising-like. The criteria of difference between strong and weak dipole interactions for one-dimensional arrays of single-domain ferromagnetic nanoparticles with uniaxial anisotropy were defined. By using numerical simulations magnetic states were obtained for 1D array for a set value of an external magnetic field. Staircase-shaped hysteresis curves obtained at orthogonality of the external magnetic field to the axis of the array are caused by weak magnetostatic interaction, which leads to the Ising-like behavior, and by a discrete set of the magnetic moment configurations. Using the Gibbs distribution, the magnetization curve is obtained for one-dimensional magnetic point dipoles Ising system in thermodynamic equilibrium state. The obtained results of the calculations are in agreement with the experimental data.
@article{DVMG_2017_17_1_a6,
     author = {{\CYRA}. {\CYRA}. Peretyatko and V. A. Ivanov and A. G. Makarov and K. V. Nefedev},
     title = {States, hysteresis and equilibrium properties of one-dimensional chains of magnetic dipoles},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {82--97},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a6/}
}
TY  - JOUR
AU  - А. А. Peretyatko
AU  - V. A. Ivanov
AU  - A. G. Makarov
AU  - K. V. Nefedev
TI  - States, hysteresis and equilibrium properties of one-dimensional chains of magnetic dipoles
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 82
EP  - 97
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a6/
LA  - ru
ID  - DVMG_2017_17_1_a6
ER  - 
%0 Journal Article
%A А. А. Peretyatko
%A V. A. Ivanov
%A A. G. Makarov
%A K. V. Nefedev
%T States, hysteresis and equilibrium properties of one-dimensional chains of magnetic dipoles
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 82-97
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a6/
%G ru
%F DVMG_2017_17_1_a6
А. А. Peretyatko; V. A. Ivanov; A. G. Makarov; K. V. Nefedev. States, hysteresis and equilibrium properties of one-dimensional chains of magnetic dipoles. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 82-97. http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a6/

[1] C. A. Ross, “Patterned magnetic recording media”, Annual Review of Materials Research, 31:1 (2001), 203–235 | DOI | MR

[2] A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, and E. E. Fullerton, “Magnetic recording: advancing into the future”, Journal of Physics D: Applied Physics, 35:19 (2002), R157 | DOI

[3] B. Terris, T. Thomson, and G. Hu, “Patterned media for future magnetic data storage”, Microsystem technologies, 13:2 (2007), 189–196 | DOI

[4] S. Tehrani, E. Chen, M. Durlam, M. DeHerrera, J. Slaughter, J. Shi, and G. Kerszykowski, “High density submicron magnetoresistive random access memory”, Journal of Applied Physics, 85:8 (1999), 5822–5827 | DOI

[5] J. Slaughter, R. Dave, M. DeHerrera, M. Durlam, B. Engel, J. Janesky, N. Rizzo, and S. Tehrani, “Fundamentals of mram technology”, Journal of superconductivity, 15:1 (2002), 19–25 | DOI

[6] J. Slaughter, R. Dave, M. Durlam, G. Kerszykowski, K. Smith, K. Nagel, B. Feil, J. Calder, M. DeHerrera, B. Garni et al., “High speed toggle mram with mgo-based tunnel junctions”, Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, 873–876 | DOI

[7] V. Belokon', K. Nefedev, O. Goroshko, and O. Tkach, “Superparamagnetism in the 1d ising model”, Bulletin of the Russian Academy of Sciences: Physics, 74:10 (2010), 1413–1416 | DOI | Zbl

[8] D. Forrester, K. Kürten, and F. Kusmartsev, “Magnetic cellular automata and the formation of glassy and magnetic structures from a chain of magnetic particles”, Physical Review B, 75:1 (2007), 014416 | DOI

[9] A. Adeyeye and S. Jain, “Coupled periodic magnetic nanostructures”, Journal of Applied Physics, 109:7 (2011), 07B903 | DOI

[10] J. Chang, B. Gribkov, H. Kim, H. Koo, S. H. Han, V. Mironov, and A. Fraerman, “Magnetization behavior of co nanodot array”, Journal of Magnetics, 12:1 (2007), 17–20 | DOI

[11] J. Suh, J. Chang, E. K. Kim, M. Sapozhnikov, V. Mironov, and A. Fraerman, “Magnetotransport properties of gamnas with ferromagnetic nanodots”, Physica Status Solidi (a), 205:5 (2008), 1043–1046 | DOI | MR

[12] E. C. Stoner and E. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240:826 (1948), 599–642 | DOI

[13] B. Belyaev, A. Izotov, and A. A. Leksikov, “Micromagnetic calculation of the equilibrium distribution of magnetic moments in thin films”, Physics of the Solid State, 52:8 (2010), 1664–1672 | DOI

[14] M. Donahue and D. Porter, Oommf user’s guide, version 1.0, Interagency Report No. NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, 1999

[15] W. Scholz, J. Fidler, T. Schrefl, D. Suess, H. Forster, V. Tsiantos et al., “Scalable parallel micromagnetic solvers for magnetic nanostructures”, Computational Materials Science, 28:2 (2003), 366–383 | DOI