Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2017_17_1_a5, author = {A. Kuzin and {\CYRA}. {\CYRA}. Peretyatko and K. S. Soldatov and K. V. Nefedev}, title = {Diluted spin ice in an external magnetic field}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {59--81}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a5/} }
TY - JOUR AU - A. Kuzin AU - А. А. Peretyatko AU - K. S. Soldatov AU - K. V. Nefedev TI - Diluted spin ice in an external magnetic field JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2017 SP - 59 EP - 81 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a5/ LA - ru ID - DVMG_2017_17_1_a5 ER -
A. Kuzin; А. А. Peretyatko; K. S. Soldatov; K. V. Nefedev. Diluted spin ice in an external magnetic field. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 59-81. http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a5/
[1] M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske, and K. W. Godfrey, “Geometrical Frustration in the Ferromagnetic Pyrochlore Ho$_2$Ti$_2$O$_7$”, Phys. Rev. Lett., 79:13 (1997), 2554–2557 | DOI
[2] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S. Shastry, “Zero-point entropy in ‘spin ice’”, Nature (London), 399 (1999), 333–335 | DOI
[3] S. T. Bramwell and M. J. P. Gingras, “Spin Ice State in Frustrated Magnetic Pyrochlore Materials”, Science, 294 (2001), 1495–1501 | DOI
[4] M. J. Harris, S. T. Bramwell, P. C. W. Holdsworth, and J. D. M. Champion, “Liquid-Gas Critical Behavior in a Frustrated Pyrochlore Ferromagnet”, Phys. Rev. Lett., 81:20 (1998), 4496–4499 | DOI
[5] R. Moessner and S. L. Sondhi, “Theory of the [111] magnetization plateau in spin ice”, Phys. Rev. B, 68:6 (2003), 064411 | DOI | MR
[6] S. V. Isakov, K. S. Raman, R. Moessner, and S. L. Sondhi, “Magnetization curve of spin ice in a [111] magnetic field”, Phys. Rev. B, 70:10 (2004), 104418 | DOI
[7] K. Matsuhira, Z. Hiroi, T. Tayama, S. Takagi, and T. Sakakibara, “A New Macroscopically Degenerate Ground State in the Spin Ice Compound Dy$_2$Ti$_2$O$_7$ under a Magnetic Field”, J. Phys.: Condens. Matter, 14 (2002), L559 | DOI
[8] Z. Hiroi, K. Matsuhira, S. Takagi, T. Tayama, T. Sakakibara, “Specific Heat of Kagome Ice in the Pyrochlore Oxide Dy$_2$Ti$_2$O$_7$”, J. Phys. Soc. Jpn., 72:2 (2003), 411–418 | DOI
[9] R. Higashinaka, H. Fukazawa, and Y. Maeno, “Anisotropic release of the residual zero-point entropy in the spin ice compound Dy$_2$Ti$_2$O$_7$: Kagome ice behavior”, Phys. Rev. B, 68:1 (2003), 014415 | DOI
[10] H. Fukazawa, R. G. Melko, R. Higashinaka, Y. Maeno, and M. J. P. Gingras, “Magnetic anisotropy of the spin-ice compound Dy$_2$Ti$_2$O$_7$”, Phys. Rev. B, 65:1 (2002), 054410 | DOI
[11] L. Pauling, “The structure and entropy of ice and of other crystals with some randomness of atomic arrangement”, J. Am. Chem. Soc., 57:12 (1935), 2680–2684 | DOI
[12] X. Ke, R. S. Freitas, B. G. Ueland, G. C. Lau, M. L. Dahlberg, R. J. Cava, R. Moessner, and P. Schiffer, “Nonmonotonic zero-point entropy in diluted spin ice”, Phys. Rev. Lett., 99:13 (2007), 137203 | DOI
[13] T. Lin, X. Ke, M. Thesberg, P. Schiffer, R. G. Melko, and M. J. P. Gingras, “Nonmonotonic residual entropy in diluted spin ice: A comparison between Monte Carlo simulations of diluted dipolar spin ice models and experimental results”, Phys. Rev. B, 90 (2014), 214433 | DOI
[14] S. Scharffe, O. Breunig, V. Cho, P. Laschitzky, M. Valldor, J. F. Welter, and T. Lorenz, “Suppression of Pauling's residual entropy in the dilute spin ice (Dy$_{1-x}$Y$_x$)$_2$Ti$_2$O$_7$”, Phys. Rev. B, 92:18 (2015), 180405(R) | DOI
[15] Yu. A. Shevchenko, K. V. Nefedev, Y. Okabe, Phys. Rev. E, \text unpublished
[16] K. Hukushima and K. Nemoto, “Exchange Monte Carlo Method and Application to Spin Glass Simulations”, J. Phys. Soc. Jpn., 65 (1996), 1604–1608 | DOI
[17] E. Marinari, “Optimized Monte Carlo methods”, Advances in Computer Simulation, ed. J. Kertész and I. Kondor, Springer-Verlag, 1998, 50–81 | DOI | Zbl
[18] L. W. Lee and A. P. Young, “Single spin- and chiral-glass transition in vector spin glasses in three-dimensions”, Phys. Rev. Lett., 90 (2003), 227203 | DOI
[19] Y. Sugita and Y. Okamoto, “Replica-exchange molecular dynamics method for protein folding”, Chem. Phys. Lett., 314 (1999), 141–151 | DOI
[20] X. Yao, “Dilute modulation of spin frustration in triangular Ising antiferromagnetic model: Wang–Landau simulation”, Solid State Commun, 150:3–4 (2010), 160–163 | DOI
[21] M Z̆ukovic̆, M. Borovský, and A. Bobák, “Phase diagram of a diluted triangular lattice Ising antiferromagnet in a field”, Phys. Lett. A, 374:41 (2010), 4260–4264 | DOI
[22] A. Peretyatko, K. Nefedev, and Yu. Okabe, “Interplay of dilution and magnetic field in the nearest-neighbor spin-ice model on the pyrochlore lattice”, Phys. Rev. B, 95:14 (2017), 144410 | DOI
[23] Y. Qi, T. Brintlinger, and J. Cumings, “Direct observation of the ice rule in demagnetized artificial kagome spin ice”, Phys. Rev. B, 77:9 (2008), 094418 | DOI
[24] P.W. Kasteleyn, “Dimer Statistics and Phase Transitions”, J. Math. Phys., 4:2 (1963), 287–293 | DOI | MR