Different representations for solving one-dimensional harmonic model of a crystal
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 30-47
Voir la notice de l'article provenant de la source Math-Net.Ru
One-dimensional harmonic model of an ideal crystalline system composed of particles is considered. For the potential corresponding to a pair interaction of particles with the nearest neighbors, we constructed the fundamental solution in the own basis matrix of this potential. It is shown how to write the solution using Chebyshev polynomials and Bessel functions, as well as to obtain an integral representation on the complex plane and using the Laplace transformation. The application of the results are presented for the potential matrix perturbed with respect to the diagonal elements.
@article{DVMG_2017_17_1_a3,
author = {M. A. Guzev and A. A. Dmitriev},
title = {Different representations for solving one-dimensional harmonic model of a crystal},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {30--47},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a3/}
}
TY - JOUR AU - M. A. Guzev AU - A. A. Dmitriev TI - Different representations for solving one-dimensional harmonic model of a crystal JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2017 SP - 30 EP - 47 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a3/ LA - ru ID - DVMG_2017_17_1_a3 ER -
M. A. Guzev; A. A. Dmitriev. Different representations for solving one-dimensional harmonic model of a crystal. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 30-47. http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a3/