Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2017_17_1_a3, author = {M. A. Guzev and A. A. Dmitriev}, title = {Different representations for solving one-dimensional harmonic model of a crystal}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {30--47}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a3/} }
TY - JOUR AU - M. A. Guzev AU - A. A. Dmitriev TI - Different representations for solving one-dimensional harmonic model of a crystal JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2017 SP - 30 EP - 47 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a3/ LA - ru ID - DVMG_2017_17_1_a3 ER -
M. A. Guzev; A. A. Dmitriev. Different representations for solving one-dimensional harmonic model of a crystal. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 30-47. http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a3/
[1] Mathematical Physics in One Dimension. Exactly Soluble Models of Interacting Particles. A Collection of Reprints With Introductory, ed. E. H. Lieb, D. C. Mattis, Academic Press, New York, London, 1966
[2] Z. Rieder, J. L. Lebowitz, E. Lieb, “Properties of a Harmonic Crystal in a Stationary Nonequilibrium State”, J. Math. Phys, 8:5 (1967), 1073–1078 | DOI
[3] N. Yang, G. Zhang, B. Li, “Violation of Fourier's law and anomalous heat diffusion in silicon nanowires”, Nano Today, 5:2 (2010), 85–90 | DOI
[4] A. M. Krivtsov, “Rasprostranenie tepla v beskonechnom odnomernom garmonicheskom kristalle”, DAN, 464:2 (2015), 162-–166 | MR
[5] C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, A. Zettl, “Breakdown of Fourier's Law in Nanotube Thermal Conductors”, Phys. Rev. Lett., 101:7 (2008), 1–4 | DOI
[6] S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen, “Polyethylene nanofibres with very high thermal conductivities”, Nature Nanotechnology, 5 (2010), 251–255 | DOI
[7] T. K. Hsiao, H. K. Chang, S. C. Liou, M. W. Chu, S. C. Lee, C. W. Chang, “Observation of room temperature ballistic thermal conduction persisting over 8.3$\mu$m in SiGe nanowires”, Nature Nanotechnology, 8 (2013), 534–538 | DOI
[8] Schrödinger, “Zur Dynamik elastisch gekoppelter Punktsysteme”, Annalen der Physik, 349:14 (1914), 916–934 | DOI
[9] R. E. Turner, “Motion of a heavy particle in a one dimensional chain”, Physica, 24:6 (1960), 269–273 | DOI | MR
[10] N. I. Aleksandrova, “Asymptotic formulae for the Lommel and Bessel functions and their derivatives”, R. Soc. Open Sci., 1 | DOI
[11] N. I. Aleksandrova, “The discrete Lamb problem: Elastic lattice waves in a block medium”, Wave Motion, 51:5 (2014), 818–832 | DOI | MR
[12] N. I. Aleksandrova, “Asimptoticheskoe reshenie antiploskoi zadachi dlya dvumernoi zadachi”, DAN, 455:1 (2014), 34–37 | MR
[13] M. A. Guzev, Yu. G. Izrailskii, M. A. Shepelov, “Molekulyarno-dinamicheskie kharakteristiki odnomernoi tochno reshaemoi modeli na razlichnykh masshtabakh”, Fizicheskaya mezomekhanika, 9:5 (2006), 53–57
[14] M. A. Guzev, A. A. Dmitriev, N. A. Permyakov, “Struktura ostatochnogo napryazheniya v modeli molekulyarnoi dinamiki”, Dalnevostochnyi matem. zhurnal, 8:2 (2008), 152–163 | MR
[15] M. A. Guzev, A. A. Dmitriev, “Peremezhaemost spektra matritsy, imeyuschei blochnuyu strukturu”, Matematika v prilozheniyakh. Vserossiiskaya konf., priurochennaya k 80-ti letiyu akad. S.K. Godunova. 20–24 iyulya 2009 g. Tez. dokl., In-t matematiki SO RAN, Novosibirsk, 2009, 98–99
[16] M. A. Guzev, A. A. Dmitriev, “O reshenii kharakteristicheskikh uravnenii sistem, opisyvayuschikh lineinye modeli molekulyarnoi dinamiki. II”, Sovremennye metody teorii kraevykh zadach. Materialy Voronezhskoi vesennei matem. shkoly. Pontryaginskie chteniya - XX. Tez. dokl., VGU, Voronezh, 2009, 42–43
[17] S. Pashkovskii, Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka: GRFML, Moskva, 1983 | MR
[18] G.Ṅ. Vatson, Teoriya besselevykh funktsii, Ch. I, IL, Moskva, 1949
[19] Kh. Karslou, D. Eger, Operatsionnye metody v prikladnoi matematike, IL, Moskva, 1948
[20] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii, T. I, Nauka: GRFML, Moskva, 1969 | MR
[21] S. K. Godunov, V. S. Ryabenkii, Raznostnye skhemy. Vvedenie v teoriyu, Nauka: GRFML, Moskva, 1977 | MR