Different representations for solving one-dimensional harmonic model of a crystal
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 30-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

One-dimensional harmonic model of an ideal crystalline system composed of particles is considered. For the potential corresponding to a pair interaction of particles with the nearest neighbors, we constructed the fundamental solution in the own basis matrix of this potential. It is shown how to write the solution using Chebyshev polynomials and Bessel functions, as well as to obtain an integral representation on the complex plane and using the Laplace transformation. The application of the results are presented for the potential matrix perturbed with respect to the diagonal elements.
@article{DVMG_2017_17_1_a3,
     author = {M. A. Guzev and A. A. Dmitriev},
     title = {Different representations for solving one-dimensional harmonic model of a crystal},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {30--47},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a3/}
}
TY  - JOUR
AU  - M. A. Guzev
AU  - A. A. Dmitriev
TI  - Different representations for solving one-dimensional harmonic model of a crystal
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 30
EP  - 47
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a3/
LA  - ru
ID  - DVMG_2017_17_1_a3
ER  - 
%0 Journal Article
%A M. A. Guzev
%A A. A. Dmitriev
%T Different representations for solving one-dimensional harmonic model of a crystal
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 30-47
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a3/
%G ru
%F DVMG_2017_17_1_a3
M. A. Guzev; A. A. Dmitriev. Different representations for solving one-dimensional harmonic model of a crystal. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 30-47. http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a3/

[1] Mathematical Physics in One Dimension. Exactly Soluble Models of Interacting Particles. A Collection of Reprints With Introductory, ed. E. H. Lieb, D. C. Mattis, Academic Press, New York, London, 1966

[2] Z. Rieder, J. L. Lebowitz, E. Lieb, “Properties of a Harmonic Crystal in a Stationary Nonequilibrium State”, J. Math. Phys, 8:5 (1967), 1073–1078 | DOI

[3] N. Yang, G. Zhang, B. Li, “Violation of Fourier's law and anomalous heat diffusion in silicon nanowires”, Nano Today, 5:2 (2010), 85–90 | DOI

[4] A. M. Krivtsov, “Rasprostranenie tepla v beskonechnom odnomernom garmonicheskom kristalle”, DAN, 464:2 (2015), 162-–166 | MR

[5] C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, A. Zettl, “Breakdown of Fourier's Law in Nanotube Thermal Conductors”, Phys. Rev. Lett., 101:7 (2008), 1–4 | DOI

[6] S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen, “Polyethylene nanofibres with very high thermal conductivities”, Nature Nanotechnology, 5 (2010), 251–255 | DOI

[7] T. K. Hsiao, H. K. Chang, S. C. Liou, M. W. Chu, S. C. Lee, C. W. Chang, “Observation of room temperature ballistic thermal conduction persisting over 8.3$\mu$m in SiGe nanowires”, Nature Nanotechnology, 8 (2013), 534–538 | DOI

[8] Schrödinger, “Zur Dynamik elastisch gekoppelter Punktsysteme”, Annalen der Physik, 349:14 (1914), 916–934 | DOI

[9] R. E. Turner, “Motion of a heavy particle in a one dimensional chain”, Physica, 24:6 (1960), 269–273 | DOI | MR

[10] N. I. Aleksandrova, “Asymptotic formulae for the Lommel and Bessel functions and their derivatives”, R. Soc. Open Sci., 1 | DOI

[11] N. I. Aleksandrova, “The discrete Lamb problem: Elastic lattice waves in a block medium”, Wave Motion, 51:5 (2014), 818–832 | DOI | MR

[12] N. I. Aleksandrova, “Asimptoticheskoe reshenie antiploskoi zadachi dlya dvumernoi zadachi”, DAN, 455:1 (2014), 34–37 | MR

[13] M. A. Guzev, Yu. G. Izrailskii, M. A. Shepelov, “Molekulyarno-dinamicheskie kharakteristiki odnomernoi tochno reshaemoi modeli na razlichnykh masshtabakh”, Fizicheskaya mezomekhanika, 9:5 (2006), 53–57

[14] M. A. Guzev, A. A. Dmitriev, N. A. Permyakov, “Struktura ostatochnogo napryazheniya v modeli molekulyarnoi dinamiki”, Dalnevostochnyi matem. zhurnal, 8:2 (2008), 152–163 | MR

[15] M. A. Guzev, A. A. Dmitriev, “Peremezhaemost spektra matritsy, imeyuschei blochnuyu strukturu”, Matematika v prilozheniyakh. Vserossiiskaya konf., priurochennaya k 80-ti letiyu akad. S.K. Godunova. 20–24 iyulya 2009 g. Tez. dokl., In-t matematiki SO RAN, Novosibirsk, 2009, 98–99

[16] M. A. Guzev, A. A. Dmitriev, “O reshenii kharakteristicheskikh uravnenii sistem, opisyvayuschikh lineinye modeli molekulyarnoi dinamiki. II”, Sovremennye metody teorii kraevykh zadach. Materialy Voronezhskoi vesennei matem. shkoly. Pontryaginskie chteniya - XX. Tez. dokl., VGU, Voronezh, 2009, 42–43

[17] S. Pashkovskii, Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka: GRFML, Moskva, 1983 | MR

[18] G.Ṅ. Vatson, Teoriya besselevykh funktsii, Ch. I, IL, Moskva, 1949

[19] Kh. Karslou, D. Eger, Operatsionnye metody v prikladnoi matematike, IL, Moskva, 1948

[20] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii, T. I, Nauka: GRFML, Moskva, 1969 | MR

[21] S. K. Godunov, V. S. Ryabenkii, Raznostnye skhemy. Vvedenie v teoriyu, Nauka: GRFML, Moskva, 1977 | MR