Application of the path integral for calculation of simultaneous probability density
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 22-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

Probability density of a random process was calculated for the linear problem of stochastic dynamics. The result obtained was shown to require the definition of the Green's function of the corresponding problem. The formulas were applied for analysis of one-dimensional Langevin equations and of the particle motion under the influence of random external forces in the presence of linear friction.
@article{DVMG_2017_17_1_a2,
     author = {M. A. Guzev},
     title = {Application of the path integral for calculation of simultaneous probability density},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {22--29},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a2/}
}
TY  - JOUR
AU  - M. A. Guzev
TI  - Application of the path integral for calculation of simultaneous probability density
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 22
EP  - 29
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a2/
LA  - ru
ID  - DVMG_2017_17_1_a2
ER  - 
%0 Journal Article
%A M. A. Guzev
%T Application of the path integral for calculation of simultaneous probability density
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 22-29
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a2/
%G ru
%F DVMG_2017_17_1_a2
M. A. Guzev. Application of the path integral for calculation of simultaneous probability density. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 22-29. http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a2/

[1] V. I. Klyatskin, Stokhasticheskie uravneniya glazami fizika (Osnovnye polozheniya, tochnye rezultaty i asimptoticheskie priblizheniya), Fizmatlit, M., 2001 | MR

[2] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, PIYaF, SPb, 1998

[3] Carson. C. Chow, Michael A. Buice, “Path Integral Methods for Stochastic Differential”, Equations Journal of Mathematical Neuroscience, 5:8 (2015), 1–35 | MR

[4] C. W. Gardiner, Stochastic methods: A Handbook for the Natural and Social sciences (Springer Series in Synergetics), Springer, Berlin, 2009 | MR

[5] N. G. Van Kampen, Stochastic processes in physics and chemistry, 3rd ed., Elsevier, Amsterdam, 2007 | MR

[6] A. N. Vasilev, Funktsionalnye metody v kvantovoi teorii polya i kvantovoi statistike, Izdatelstvo Leningr. un-ta, Leningrad, 1976