Convergence of Newton's method for equations of complex heat transfer
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

Global monotonic convergence of Newton's method is proved for solving equations of complex heat transfer within the $P_1$ approximation of the radiative transfer equation.
@article{DVMG_2017_17_1_a0,
     author = {G. V. Grenkin},
     title = {Convergence of {Newton's} method for equations of complex heat transfer},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a0/}
}
TY  - JOUR
AU  - G. V. Grenkin
TI  - Convergence of Newton's method for equations of complex heat transfer
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 3
EP  - 10
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a0/
LA  - ru
ID  - DVMG_2017_17_1_a0
ER  - 
%0 Journal Article
%A G. V. Grenkin
%T Convergence of Newton's method for equations of complex heat transfer
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 3-10
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a0/
%G ru
%F DVMG_2017_17_1_a0
G. V. Grenkin. Convergence of Newton's method for equations of complex heat transfer. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a0/