Stationary flows in acyclic queuing networks
Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 223-228
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper an open acyclic queuing network with exponentially distributed service times is considered. Using a transformation of this network to a network of multiphase type it is proved that its flows are Poisson and some of these flows are independent. Applications to systems with retrial queues are described.
@article{DVMG_2016_16_2_a9,
author = {G. Sh. Tsitsiashvili and M. A. Osipova},
title = {Stationary flows in acyclic queuing networks},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {223--228},
year = {2016},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a9/}
}
G. Sh. Tsitsiashvili; M. A. Osipova. Stationary flows in acyclic queuing networks. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 223-228. http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a9/
[1] P. J. Burke, “The output of a queuing system”, Operations Research, 4 (1956), 699–704 | DOI | MR
[2] T. Kh. Kormen, Ch. I. Leizerson, R. L. Rivest, K. Shtain, Algoritmy: postroenie i analiz, Vilyams, Moskva, 2006
[3] J. R. Jackson, “Networks of Waiting Lines”, Oper. Res. Vol., 5:4 (1957), 518–521 | DOI | MR
[4] V. I. Tikhonov, M. A. Mironov, Markovskie protsessy, Sov. radio, Moskva, 1977 | MR