Thermodynamically consistent equations of the couple stress elasticity
Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 209-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

To describe motion in a micropolar medium, with the concurrent translational degrees of freedom and independent particle rotations, it is chosen to use natural measure of curvature that is a strain state characteristic independent of deformation method. It is shown that the common Lagrangian curvature measure with the rate of change equal to a tensor of angular velocity gradients is only applicable under geometrically linear approximation. The nonlinear constitutive equations of the couple stress theory are constructed using the method of internal thermodynamic parameters of state. The linearization of these equations in isotropic case yields the Cosserat continuum equations, where material resistance to the change in curvature is characterized by a single coefficient as against the three independent coefficients of the classical theory. The complete system of equations for the dynamics of a medium with couple stresses under finite strains and particle rotations reduces to a thermodynamically consistent system of laws of conservation. This system allows to obtain the integral estimates that guarantee the uniqueness and continuous dependence on the initial data of solutions of the Cauchy problems and the boundary-value problems with dissipative boundary conditions.
@article{DVMG_2016_16_2_a8,
     author = {V. M. Sadovskii},
     title = {Thermodynamically consistent equations of the couple stress elasticity},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {209--222},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a8/}
}
TY  - JOUR
AU  - V. M. Sadovskii
TI  - Thermodynamically consistent equations of the couple stress elasticity
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2016
SP  - 209
EP  - 222
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a8/
LA  - ru
ID  - DVMG_2016_16_2_a8
ER  - 
%0 Journal Article
%A V. M. Sadovskii
%T Thermodynamically consistent equations of the couple stress elasticity
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2016
%P 209-222
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a8/
%G ru
%F DVMG_2016_16_2_a8
V. M. Sadovskii. Thermodynamically consistent equations of the couple stress elasticity. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 209-222. http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a8/

[1] E. Cosserat, F. Cosserat, Théorie des Corps Déformables, Librairie Scientifique A. Hermann et Fils, Paris, 1909

[2] V. A. Palmov, “Osnovnye uravneniya teorii nesimmetrichnoi uprugosti”, Prikl. matem. i mekhan., 28:3 (1964), 401–408 | MR

[3] V. T. Koiter, “Momentnye napryazheniya v teorii uprugosti”, Mekhanika: Sb. perevodov, v. 3, 1965, 89–112

[4] E. L. Aero, A. N. Bulygin, E. V. Kuvshinskii, “Asimmetricheskaya gidromekhanika”, Prikl. matem. i mekhan., 29:2 (1965), 297–308 | Zbl

[5] V. I. Kondaurov, “O nelineinykh uravneniyakh dinamiki uprugoi mikropolyarnoi sredy”, Prikl. matem. i mekhan., 48:3 (1984), 404–413 | MR | Zbl

[6] E. Nikitin, L. M. Zubov, “Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress”, J. Elast., 51 (1998), 1–22 | DOI | MR | Zbl

[7] W. Pietraszkiewicz, V. A. Eremeev, “On natural strain measures of the non-linear micropolar continuum”, Int. J. Solids Struct., 46 (2009), 774–787 | DOI | MR | Zbl

[8] A. E. Green, P. M. Naghdi, W. L. Wainwright, “A general theory of a Cosserat surface”, Arch. Rat. Mech. Anal., 20:4 (1965), 287–308 | DOI | MR

[9] L. I. Shkutin, Mekhanika deformatsii gibkikh tel, Nauka, Sib. otd-nie, Novosibirsk, 1988

[10] Kh. Altenbakh, P. A. Zhilin, “Obschaya teoriya uprugikh prostykh obolochek”, Uspekhi mekhaniki, 11:4 (1988), 107–148 | MR

[11] V. M. Sadovskii, “Termodinamicheski samosoglasovannaya sistema zakonov sokhraneniya nesimmetrichnoi teorii uprugosti”, Dalnevost. matem. zhurn., 11:2 (2011), 201–212 | MR

[12] V. I. Kondaurov, V. E. Fortov, Osnovy termomekhaniki kondensirovannoi sredy, Izd-vo MFTI, M., 2002

[13] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauchnaya kniga, Novosibirsk, 1998

[14] O. Sadovskaya, V. Sadovskii, Mathematical Modeling in Mechanics of Granular Materials, Ser.: Advanced Structured Materials, v. 21, Springer, Heidelberg – New York – Dordrecht – London, 2012 | MR

[15] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[16] S. K. Godunov, Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR