On the rank of a finite set of theta functions
Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 181-185
Cet article a éte moissonné depuis la source Math-Net.Ru
In the work for the theta function $$ \theta(z)=\theta(z;q)=\sum\limits_{n=-\infty}^{\infty}e^{2izn}q^{n^2} $$ identity \begin{gather*} \theta(z_1+w)\dots\theta(z_{k-1}+w)\theta(z_1+\dots+z_{k-1}-w)=\sum\limits_{i=1}^{s}\varphi_i(z_1,\dots,z_{k-1})\psi_i(w) \\ (\forall z_1,\dots, z_{k-1}, w \in \mathbb{C}) \end{gather*} with some clearly indicates theta functions $\psi_i$ of one variable and functions $\varphi_i$ of $k-1$ variables is proved.
@article{DVMG_2016_16_2_a6,
author = {M. D. Monina},
title = {On the rank of a finite set of theta functions},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {181--185},
year = {2016},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a6/}
}
M. D. Monina. On the rank of a finite set of theta functions. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 181-185. http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a6/
[1] V. M. Bukhshtaber, D. V. Leikin, “Trilineinye funktsionalnye uravneniya”, UMN, 60:2 (2005), 151–152 | DOI | MR | Zbl
[2] V. M. Bukhshtaber, D. V. Leikin, “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Nelineinaya dinamika, Sbornik statei, Tr. MIAN, 251, 2005, 54–126 | Zbl
[3] V. M. Bukhshtaber, I. M. Krichever, “Integriruemye uravneniya, teoremy slozheniya i problema Rimana–Shottki”, UMN, 61:1 (2006), 25–84 | DOI | MR | Zbl
[4] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, v. 2, Gos. izd. fiz.-mat. lit., Moskva, 1963
[5] V. A. Bykovskii, “Giperkvazimnogochleny i ikh prilozheniya”, Funkts. analiz i ego pril., 50:3 (2016), 34–46 | DOI