Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2016_16_2_a4, author = {M. A. Guzev and I. A. Molotkov}, title = {Longitudinal finite-amplitude wave in nonlinear homogeneous elastic medium. {The} equations of {Landau-Murnaghan}}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {160--168}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a4/} }
TY - JOUR AU - M. A. Guzev AU - I. A. Molotkov TI - Longitudinal finite-amplitude wave in nonlinear homogeneous elastic medium. The equations of Landau-Murnaghan JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2016 SP - 160 EP - 168 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a4/ LA - ru ID - DVMG_2016_16_2_a4 ER -
%0 Journal Article %A M. A. Guzev %A I. A. Molotkov %T Longitudinal finite-amplitude wave in nonlinear homogeneous elastic medium. The equations of Landau-Murnaghan %J Dalʹnevostočnyj matematičeskij žurnal %D 2016 %P 160-168 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a4/ %G ru %F DVMG_2016_16_2_a4
M. A. Guzev; I. A. Molotkov. Longitudinal finite-amplitude wave in nonlinear homogeneous elastic medium. The equations of Landau-Murnaghan. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 160-168. http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a4/
[1] J. W. Strutt (Rayleigh), “Aerial plane waves of finite amplitude”, Proc. Roy. Soc., A-84 (1910), 247–284
[2] R. D. Fay, “Plane sound waves of finite amplitude”, J. Acoust. Soc. Amer., 3:2 part 1 (1996), 222–241
[3] L. Landau, G. Rumer, “Ueberschall absorption in festern koerpern”, Zs. Sov. Phys., 3 (1937), 18–27
[4] E. D. Murnaghan, Finite deformation of an elastic solid, John Wiley, NY, 1951 | MR | Zbl
[5] L. D. Landau, E. M. Lifshits, Teoriya uprugosti, Nauka, M., 1987
[6] P. Debye, Vortraege ueber die kinetische theorie der materie und der electrizitaet, Teubner, Berlin, 1914
[7] Dzh. Uizem, Lineinye i nelineinye volny., Nauka, M., 1977
[8] I. A. Molotkov, Analiticheskie metody v teorii nelineinykh voln, Fizmatlit, M., 2003
[9] I. Ya. Pomeranchuk, “O teploprovodnosti dielektrikov pri temperaturakh bolshe debaevskoi”, ZhETF, 11 (1941), 246 | Zbl
[10] S. K. Godunov, I. M. Peshkov, “Simmetricheskie giperbolicheskie uravneniya nelineinoi teorii uprugosti”, Zh. vychisl. matem. i matem. fiziki, 48:6 (2008), 1034–1055 | MR | Zbl
[11] A. A. Sheina, A. I. Aleksandrovich, “Reshenie prostranstvennykh zadach nelineinoi teorii uprugosti metodami mnogomernogo kompleksnogo analiza”, Vestnik Nizhegor. univ., 4 (2011)
[12] I. G. Kuleev, I. I. Kuleev, “Relaksatsiya kvazipoperechnykh fononov v mekhanizme Kherringa i pogloschenie ultrazvuka v kubicheskikh kristallakh s polozhitelnoi i otritsatelnoi anizotropiei uprugikh modulei vtorogo poryadka”, Fizika tverdogo tela, 51:11 (2009), 2211–2223
[13] C. Payan, V. Garnier, J. Mogsan, P. A. Johnson, “Determination on third order elastic constants in a complex solid applying coda wave interferometry”, Appl. Phys. Lett., 98 (2009), 011904 | DOI
[14] V. M. Babich, A. S. Alekseev, “Luchevoi metod rascheta intensivnosti volnovykh frontov”, Izv. AN SSSR, ser. geof., 1 (1958), 17–31 | MR
[15] V. Cerveny, I. A. Molotkov, I. Psencik, Ray method in seismology, Prague, 1977