Longitudinal finite-amplitude wave in nonlinear homogeneous elastic medium. The equations of Landau-Murnaghan
Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 160-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

High-frequency asymptotic solution of the equations of motion for waves in nonlinear and homogeneous elastic mediumis is obtained, with predominantly longitudinal polarization. The main part of the solution is known from the consideration of the linear problem. The general solution except the main part contains two completely new part describing the excitation of the transverse wave and wave with the double frequency. These effects result in distortion of wave fronts, as well as to the weak attenuation of the primary longitudinal wave along the way. The inclusion of these nonlinear effects are important in the analysis of seismic waves.
@article{DVMG_2016_16_2_a4,
     author = {M. A. Guzev and I. A. Molotkov},
     title = {Longitudinal finite-amplitude wave in  nonlinear homogeneous elastic medium. {The} equations of {Landau-Murnaghan}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {160--168},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a4/}
}
TY  - JOUR
AU  - M. A. Guzev
AU  - I. A. Molotkov
TI  - Longitudinal finite-amplitude wave in  nonlinear homogeneous elastic medium. The equations of Landau-Murnaghan
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2016
SP  - 160
EP  - 168
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a4/
LA  - ru
ID  - DVMG_2016_16_2_a4
ER  - 
%0 Journal Article
%A M. A. Guzev
%A I. A. Molotkov
%T Longitudinal finite-amplitude wave in  nonlinear homogeneous elastic medium. The equations of Landau-Murnaghan
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2016
%P 160-168
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a4/
%G ru
%F DVMG_2016_16_2_a4
M. A. Guzev; I. A. Molotkov. Longitudinal finite-amplitude wave in  nonlinear homogeneous elastic medium. The equations of Landau-Murnaghan. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 160-168. http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a4/

[1] J. W. Strutt (Rayleigh), “Aerial plane waves of finite amplitude”, Proc. Roy. Soc., A-84 (1910), 247–284

[2] R. D. Fay, “Plane sound waves of finite amplitude”, J. Acoust. Soc. Amer., 3:2 part 1 (1996), 222–241

[3] L. Landau, G. Rumer, “Ueberschall absorption in festern koerpern”, Zs. Sov. Phys., 3 (1937), 18–27

[4] E. D. Murnaghan, Finite deformation of an elastic solid, John Wiley, NY, 1951 | MR | Zbl

[5] L. D. Landau, E. M. Lifshits, Teoriya uprugosti, Nauka, M., 1987

[6] P. Debye, Vortraege ueber die kinetische theorie der materie und der electrizitaet, Teubner, Berlin, 1914

[7] Dzh. Uizem, Lineinye i nelineinye volny., Nauka, M., 1977

[8] I. A. Molotkov, Analiticheskie metody v teorii nelineinykh voln, Fizmatlit, M., 2003

[9] I. Ya. Pomeranchuk, “O teploprovodnosti dielektrikov pri temperaturakh bolshe debaevskoi”, ZhETF, 11 (1941), 246 | Zbl

[10] S. K. Godunov, I. M. Peshkov, “Simmetricheskie giperbolicheskie uravneniya nelineinoi teorii uprugosti”, Zh. vychisl. matem. i matem. fiziki, 48:6 (2008), 1034–1055 | MR | Zbl

[11] A. A. Sheina, A. I. Aleksandrovich, “Reshenie prostranstvennykh zadach nelineinoi teorii uprugosti metodami mnogomernogo kompleksnogo analiza”, Vestnik Nizhegor. univ., 4 (2011)

[12] I. G. Kuleev, I. I. Kuleev, “Relaksatsiya kvazipoperechnykh fononov v mekhanizme Kherringa i pogloschenie ultrazvuka v kubicheskikh kristallakh s polozhitelnoi i otritsatelnoi anizotropiei uprugikh modulei vtorogo poryadka”, Fizika tverdogo tela, 51:11 (2009), 2211–2223

[13] C. Payan, V. Garnier, J. Mogsan, P. A. Johnson, “Determination on third order elastic constants in a complex solid applying coda wave interferometry”, Appl. Phys. Lett., 98 (2009), 011904 | DOI

[14] V. M. Babich, A. S. Alekseev, “Luchevoi metod rascheta intensivnosti volnovykh frontov”, Izv. AN SSSR, ser. geof., 1 (1958), 17–31 | MR

[15] V. Cerveny, I. A. Molotkov, I. Psencik, Ray method in seismology, Prague, 1977