Unique solvability of the subdifferential boundary value problem for
Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 229-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of the process of radiation-conductive heat transfer with the multi-valued dependence of emissivity on the radiation intensity is considered. The unique solvability of the subdifferential boundary value problem for the complex heat transfer equations in a three-dimensional domain is proved.
@article{DVMG_2016_16_2_a10,
     author = {A. Yu. Chebotarev and G. V. Grenkin and A. E. Kovtanyuk},
     title = {Unique solvability of the subdifferential boundary value problem for},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {229--236},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a10/}
}
TY  - JOUR
AU  - A. Yu. Chebotarev
AU  - G. V. Grenkin
AU  - A. E. Kovtanyuk
TI  - Unique solvability of the subdifferential boundary value problem for
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2016
SP  - 229
EP  - 236
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a10/
LA  - ru
ID  - DVMG_2016_16_2_a10
ER  - 
%0 Journal Article
%A A. Yu. Chebotarev
%A G. V. Grenkin
%A A. E. Kovtanyuk
%T Unique solvability of the subdifferential boundary value problem for
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2016
%P 229-236
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a10/
%G ru
%F DVMG_2016_16_2_a10
A. Yu. Chebotarev; G. V. Grenkin; A. E. Kovtanyuk. Unique solvability of the subdifferential boundary value problem for. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 229-236. http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a10/

[1] Modest M.F., Radiative Heat Transfer, Academic Press, 2003

[2] A. E. Kovtanyuk, A. Yu. Chebotarev, “Statsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. fiz., 54:4 (2014), 191–199 | MR

[3] A. E. Kovtanyuk, A. Yu. Chebotarev, “An iterative method for solving a complex heat transfer problem”, Appl. Math. Comput., 219 (2013), 9356–9362 | MR | Zbl

[4] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Solvability of P1 approximation of a conductive-radiative heat transfer problem”, Appl. Math. Comput., 249 (2014), 247–252 | MR | Zbl

[5] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409:2 (2014), 808–815 | DOI | MR | Zbl

[6] A. E. Kovtanyuk, A. Yu. Chebotarev, “Statsionarnaya zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Differentsialnye uravneniya, 50:12 (2014), 1590–1597 | DOI | MR | Zbl

[7] G. V. Grenkin, A. Yu. Chebotarev, “Ustoichivost statsionarnykh reshenii diffuzionnoi modeli slozhnogo teploobmena”, Dalnevostochnyi matematicheskii zhurnal, 14:1 (2014), 18–32 | Zbl

[8] G. V. Grenkin, A. Yu. Chebotarev, “Nestatsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. fiz., 54:11 (2014), 1806–1816 | DOI | MR | Zbl

[9] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Unique solvability of a steady-state complex heat transfer model”, Communications in Nonlinear Science and Numerical Simulation, 20:2 (2015), 776–784 | DOI | MR | Zbl

[10] G. V. Grenkin, A. Yu. Chebotarev, “Neodnorodnaya nestatsionarnaya zadacha slozhnogo teploobmena”, Sibirskie elektronnye matematicheskie izvestiya, 12:11 (2015), 562–576 | Zbl

[11] G. V. Grenkin, A. Yu. Chebotarev, “Nestatsionarnaya zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Zh. vychisl. matem. fiz., 56:2 (2016), 275–282 | DOI | MR | Zbl

[12] A. A. Amosov, “Globalnaya razreshimost odnoi nelineinoi nestatsionarnoi zadachi s nelokalnym kraevym usloviem tipa teploobmena izlucheniem”, Differentsialnye uravneniya, 41:1 (2005), 93–104 | MR | Zbl

[13] P.-E. Druet, “Existence of weak solutions to the time-dependent MHD-equations coupled to heat transfer with nonlocal radiation boundary conditions”, Nonlinear Anal. Real World Appl., 10:5 (2009), 2914–2936 | DOI | MR | Zbl

[14] O. Tse, R. Pinnau, N. Siedow, “Identification of temperature dependent parameters in laser–interstitial thermo therapy”, Math. Models Methods Appl. Sci., 22:9 (2012), 1–29 | DOI | MR

[15] A. A. Amosov, “O razreshimosti odnoi zadachi teploobmena izlucheniem”, Dokl. AN SSSR, 245:6 (1979), 1341–1344 | MR

[16] A. A. Amosov, “Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, Journal of Mathematical Sciences, 164:3 (2010), 309–344 | DOI | MR | Zbl

[17] A. A. Amosov, “Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, Journal of Mathematical Sciences, 165:1 (2010), 1–41 | DOI | MR | Zbl

[18] R. Pinnau, “Analysis of Optimal Boundary Control for Radiative Heat Transfer Modelled by the SP$_1$-System”, Comm. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl

[19] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Anal. Appl., 412 (2014), 520–528 | DOI | MR | Zbl

[20] G. V. Grenkin, “Optimalnoe upravlenie v nestatsionarnoi zadache slozhnogo teploobmena”, Dalnevostochnyi matematicheskii zhurnal, 14:2 (2014), 160–172 | Zbl

[21] G. V. Grenkin, A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Boundary optimal control problem of complex heat transfer model”, J. Math. Anal. Appl., 433 (2016), 1243–1260 | DOI | MR | Zbl

[22] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Optimal boundary control of a steady-state heat transfer model accounting for radiative effects”, J. Math. Anal. Appl., 439 (2016), 678–689 | DOI | MR | Zbl

[23] A. Yu. Chebotarev, A. E. Kovtanyuk, G. V. Grenkin, N. D. Botkin, K.-H. Hoffmann, “Nondegeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model”, Applied Mathematics and Computation, 289 (2016), 371–380 | DOI | MR

[24] G. V. Grenkin, “Algoritm resheniya zadachi granichnogo optimalnogo upravleniya v modeli slozhnogo teploobmena”, Dalnevostochnyi matematicheskii zhurnal, 16:1 (2016), 24–38

[25] G. V. Grenkin, A. Yu. Chebotarev, “Upravlenie slozhnym teploobmenom pri sozdanii ekstremalnykh polei”, Zh. vychisl. matem. fiz., 56:10 (2016), 1725–1732 | DOI | MR

[26] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, M.: Mir, 1972 | MR

[27] A. Yu. Chebotarev, “Variatsionnye neravenstva dlya operatora tipa Nave-Stoksa i odnostoronnie zadachi dlya uravnenii vyazkoi teploprovodnoi zhidkosti”, Matematicheskie zametki, 70:2 (2001), 296–307 | DOI | Zbl