Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2016_16_1_a7, author = {G. A. Sultanova}, title = {The dimensions of the {Lie} algebra of automorphisms in tangent bundles with a complete lift connection with {projective-Euclidean} base}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {83--95}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a7/} }
TY - JOUR AU - G. A. Sultanova TI - The dimensions of the Lie algebra of automorphisms in tangent bundles with a complete lift connection with projective-Euclidean base JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2016 SP - 83 EP - 95 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a7/ LA - ru ID - DVMG_2016_16_1_a7 ER -
%0 Journal Article %A G. A. Sultanova %T The dimensions of the Lie algebra of automorphisms in tangent bundles with a complete lift connection with projective-Euclidean base %J Dalʹnevostočnyj matematičeskij žurnal %D 2016 %P 83-95 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a7/ %G ru %F DVMG_2016_16_1_a7
G. A. Sultanova. The dimensions of the Lie algebra of automorphisms in tangent bundles with a complete lift connection with projective-Euclidean base. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 1, pp. 83-95. http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a7/
[1] A. Morimoto, “Prolongation of connections to bundles of infinitely near points”, Diff. Geom., 11 (1976), 479–498 | MR | Zbl
[2] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York, 1973 | MR | Zbl
[3] A. P. Shirokov, “Zamechanie o strukturakh v kasatelnykh rassloeniyakh”, Tr. Geom. semin., 5 (1974), 311–318 | Zbl
[4] V. V. Shurygin, “Gladkie mnogoobraziya nad lokalnymi algebrami i rassloeniya Veilya”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 73 (2002), 162–236 | Zbl
[5] V. V. Vishnevskii, “Integriruemye affinornye struktury i ikh plyuralnye interpretatsii”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 73 (2002), 5–64
[6] B. N. Shapukov, “Lift svyaznosti na tenzornykh rassloeniyakh”, Izv. vuzov. Matem., 1986, no. 12, 70–72 | MR | Zbl
[7] F. I. Kagan, “Rimanovy metriki v kasatelnom rassloenii nad rimanovym mnogoobraziem, I”, Izv. vuzov. Matem., 1973, no. 6, 42–51 | MR | Zbl
[8] K. Sato, “Infinitesimal affine transformations of the tangent bundles with Sasaki metric”, Tohoku Math, 26:3 (1974), 353–361 | DOI | MR | Zbl
[9] S. Tanno, “Infinitesimal isometries on the tangent bundles with complete lift metric”, Tensor, N.S., 28 (1974), 139–144 | MR | Zbl
[10] X. Shadyev, “Affinnaya kollineatsiya sinekticheskoi svyaznosti v kasatelnom rassloenii”, Tr. geom. sem., 16, Izd-vo Kazanskogo un-ta, Kazan, 1984, 117–-127 | MR
[11] A. Ya. Sultanov, “Prodolzheniya tenzornykh polei i svyaznostei v rassloeniya Veilya”, Izv. vuzov. Matem., 1999, no. 9, 64–72 | MR | Zbl
[12] A. Ya. Sultanov, “Differentsirovanie lineinykh algebr i lineinye svyaznosti”, Itogi nauki i tekhn. VINITI. Sovrem. mat. i ee pril. Tematicheskie obzory, 2009, no. 123, 142–210 | MR
[13] A. Morimoto, “Prolongation of connections to tangent bundles of higher order”, Nagoya Math., 40 (1970), 99–120 | MR | Zbl
[14] A. Ya. Sultanov, G. A. Sultanova, “Otsenka razmernostei algebry Li infinitezimalnykh affinnykh preobrazovanii kasatelnogo rassloeniya $T(M)$ so svyaznostyu polnogo lifta”, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 156:2 (2014), 43–54
[15] P. K. Rashevskii, Rimanova geometriya i tenzornyi analiz, Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, Moskva, 1967 | MR
[16] N. C. Sinyukov, Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, Moskva, 1979 | MR
[17] I. P. Egorov, Dvizheniya v prostranstvakh affinnoi svyaznosti, Librokom, Moskva, 2009
[18] A. P. Shirokov, “Geometriya kasatelnykh rassloenii i prostranstva nad algebrami”, Itogi nauki i tekhn. Ser. Probl. geom., 12 (1981), 61–95 | MR | Zbl