Arithmetic essence of octuple product identity
Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 1, pp. 69-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper a new proof of octuple product identity is offered using simple arithmetic methods.
@article{DVMG_2016_16_1_a6,
     author = {M. A. Romanov},
     title = {Arithmetic essence of octuple product identity},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {69--82},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a6/}
}
TY  - JOUR
AU  - M. A. Romanov
TI  - Arithmetic essence of octuple product identity
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2016
SP  - 69
EP  - 82
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a6/
LA  - ru
ID  - DVMG_2016_16_1_a6
ER  - 
%0 Journal Article
%A M. A. Romanov
%T Arithmetic essence of octuple product identity
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2016
%P 69-82
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a6/
%G ru
%F DVMG_2016_16_1_a6
M. A. Romanov. Arithmetic essence of octuple product identity. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 1, pp. 69-82. http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a6/

[1] C. G. J. Jacobi, “Fundamenta nova theoriae functionum ellipticarum”, Gesammelte Werke, v. 1, Berlin, 1881, 49–239

[2] C. G. J. Jacobi, “Teoriae der elliptischen Functionen aus den Eigenschaften der Thetareihen abgeleitet”, Gesammelte Werke, v. 1, Berlin, 1881, 497–538

[3] C. G. J. Jacobi, Gesammelte Werke, v. 1, Berlin, 1881

[4] C. F. Gauss, Gauss Werke II, Göttingen, 1863

[5] R. Fricke, Die Elliptischen Funktionen und ihre Anwendungen, v. 1, Springer, Berlin, 2011

[6] A. O. L. Atkin , P. Swinnerton-Dyer, “Some properties of partitions”, Proc. London Math. Soc. (3), 4 (1954), 84–106 | DOI | MR | Zbl

[7] B. Gordon, “Some identities in combinatorial analysis”, Quart. J. Math. Oxford Ser. (2), 12 (1961), 285–290 | DOI | MR | Zbl

[8] G. N. Watson, “Theorems stated by Ramanujan (VII): Theorems on a continued fraction”, J. London Math. Soc., 4 (1929), 39–48 | DOI | MR | Zbl

[9] A. A. Klyachko, “Modulyarnye formy i predstavleniya simmetricheskikh grupp”, Zap. nauchn. sem. LOMI, 116 (1982), 174–185 | MR

[10] N. V. Budarina, V. A. Bykovskii, “Arifmeticheskaya priroda tozhdestv dlya troinogo i pyatikratnogo proizvedenii”, Dalnevost. matem. zhurn., 11:2 (2011), 140–148 | MR

[11] H. M. Weber, Lehrbuch der Algebra, v. 3, Braunschweig, 1908

[12] A. Veil, Ellipticheskie funktsii po Eizenshteinu i Kronekeru, Mir, Moskva, 1978 | MR

[13] V. G. Kats, P. Chen, Kvantovyi analiz, MTsNMO, Moskva, 2005, 128 pp.

[14] V. G. Kats, Verteksnye algebry dlya nachinayuschikh, MTsNMO, Moskva, 2005, 200 pp.

[15] L. E. Dickson, History of the Theory of Numbers, v. 2, Chelsea Pub. Co., New York, 1952

[16] J. V. Uspensky, M. A. Heaslet, Elementary Number Theory, McGraw-Hill Book Company Inc., New York and London, 1939

[17] B. A. Venkov, Elementarnaya teoriya chisel, ONTI NKPT SSSR, Moskva, Leningrad, 1937, 222 pp.

[18] Kenneth S. Williams, Number theory in the spirit of Liouville, v. 76, London Mathematical Society Student Texts, Cambridge University Press, 2011 | MR | Zbl

[19] V.Ȧ. Bykovskii, M. D. Monina, “Ob arifmeticheskoi prirode nekotorykh tozhdestv teorii ellipticheskikh funktsii”, Dalnevost. matem. zhurn., 13:1 (2013), 15–34 | MR | Zbl