Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2015_15_2_a7, author = {N. A. Pavlov}, title = {Distortion theorem for bounded univalent functions}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {238--246}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a7/} }
N. A. Pavlov. Distortion theorem for bounded univalent functions. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 238-246. http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a7/
[1] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer, Berlin, 1992 | MR | Zbl
[2] C. C. Cowen, Ch. Pommerenke, “Inequalities for the angular derivative of an analytic function in the unit disk”, J. London Math. Soc., 2:26 (1982), 271–289 | DOI | MR
[3] A. Frolova, M. Levenshtein, D. Shoikhet, A. Vasil'ev, “Boundary distortion estimates for holomorphic maps”, Complex Analysis and Operator Theory, 8:5 (2014), 1129–1149 | DOI | MR | Zbl
[4] Ch. Pommerenke, A. Vasil'ev, “Angular derivatives of bounded univalent functions and extremal partitions of the unit disk”, Pacific. J. Math., 206:2 (2002), 425–450 | DOI | MR | Zbl
[5] Z. Nehari, “Some inequalities in the theory of functions”, Trans. Amer. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl
[6] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009
[7] I. I. Privalov, Vvedenie v teoriyu funktsii funktsii kompleksnogo peremennogo, Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1984 | MR