Simplicial 2-spheres obtained from non-singular complete fans
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 277-288
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that a simplicial 2-sphere satisfying a certain condition is the underlying simplicial complex of a 3-dimensional non-singular complete fan. In particular, this implies that any simplicial 2-sphere with $\leq 18$ vertices is the underlying simplicial complex of such a fan.
@article{DVMG_2015_15_2_a10,
author = {Yu. Suyama},
title = {Simplicial 2-spheres obtained from non-singular complete fans},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {277--288},
year = {2015},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a10/}
}
Yu. Suyama. Simplicial 2-spheres obtained from non-singular complete fans. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 277-288. http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a10/
[1] G. Brinkmann and B. D. McKay, “Construction of planar triangulations with minimum degree 5”, Discrete Math., 301 (2005), 147–163 | DOI | MR | Zbl
[2] C. Delaunays, “On hyperbolicity of toric real threefolds”, Int. Math. Res. Not., 2005, no. 51, 3191–3201 | DOI | MR
[3] M. W. Davis and T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62 (1991), 417–451 | DOI | MR | Zbl
[4] T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, Ergeb. Math. Grenzgeb. (3), Springer-Verlag, Berlin, 1988 | MR | Zbl