Some remarks on integral parameters of Wiener process
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 156-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if generalized function $\rho\in W_2^{-1}[0,1]$ is a multiplier of trace-class from space $W_2^1[0,1]$ to space $W_2^{-1}[0,1]$ then the distribution of stochastic variable $\int_0^1\rho\xi^2\,dt$ (where $\xi$ is a Wiener process) is determined by the spectrum of the boundary problem $$ -y''=\lambda\rho y,\qquad y(0)=y'(1)=0, $$ as in the case when $\rho$ is a measure. An example of generalized function $\rho\in W_2^{-1}[0,1]$ that is not a multiplier of trace-class from $W_2^1[0,1]$ to $W_2^{-1}[0,1]$ is also given.
@article{DVMG_2015_15_2_a1,
     author = {A. A. Vladimirov},
     title = {Some remarks on integral parameters of {Wiener} process},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {156--165},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a1/}
}
TY  - JOUR
AU  - A. A. Vladimirov
TI  - Some remarks on integral parameters of Wiener process
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2015
SP  - 156
EP  - 165
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a1/
LA  - ru
ID  - DVMG_2015_15_2_a1
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%T Some remarks on integral parameters of Wiener process
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2015
%P 156-165
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a1/
%G ru
%F DVMG_2015_15_2_a1
A. A. Vladimirov. Some remarks on integral parameters of Wiener process. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 156-165. http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a1/

[1] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR

[2] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhënnykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[3] M. I. Neiman-zade, A. A. Shkalikov, “Operatory Shrëdingera s singulyarnymi potentsialami iz prostranstv multiplikatorov”, Matem. zametki, 66:5 (1999), 723–733 | DOI | MR | Zbl

[4] A. A. Vladimirov, I. A. Sheipak, “Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma\;–\;Liuvillya s singulyarnym indefinitnym vesom”, Matem. sb., 197:11 (2006), 13–30 | DOI | MR | Zbl

[5] A. A. Vladimirov, I. A. Sheipak, “Indefinitnaya zadacha Shturma\;–\;Liuvillya dlya nekotorykh klassov samopodobnykh vesov”, Trudy MIAN im. V.A. Steklova, 255 (2006), 88–98 | MR | Zbl

[6] M. A. Lifshits, “On the lower tail probabilities of some random series”, Ann. Prob., 25:1 (1997), 424–442 | DOI | MR | Zbl

[7] A. I. Nazarov, “Logarifmicheskaya asimptotika malykh uklonenii dlya nekotorykh gaussovskikh protsessov v $L_2$-norme otnositelno samopodobnoi mery”, Zapiski nauch. semin. POMI, 311 (2004), 190–213 | MR | Zbl