The evolution equations of intensive deformation problems of elastic inhomogeneous medium
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 76-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The motion problems of the plane longitudinal or transverse shock wave for the nonlinear elastic medium model with inhomogeneous properties, which are represented by a continuous changes of the elastic moduli and density are considered. Changing of the medium properties is assumed in the direction of the wave fronts motion. The method of matched asymptotic expansions allows to determine the problems evolution equations, reflecting nonlinear wave processes and the inhomogeneity of the medium. The most interesting variant of the evolution equation occurs when the intensity of the impact process and the small inhomogeneity have the same order. The transition to the limiting inner problem of the small parameter method is dictated by the chain of inner problems for which it is necessary to change all the independent variables and their scales.
@article{DVMG_2015_15_1_a7,
     author = {V. E. Ragozina and Yu. E. Ivanova},
     title = {The evolution equations of intensive deformation problems of elastic inhomogeneous medium},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {76--90},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a7/}
}
TY  - JOUR
AU  - V. E. Ragozina
AU  - Yu. E. Ivanova
TI  - The evolution equations of intensive deformation problems of elastic inhomogeneous medium
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2015
SP  - 76
EP  - 90
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a7/
LA  - ru
ID  - DVMG_2015_15_1_a7
ER  - 
%0 Journal Article
%A V. E. Ragozina
%A Yu. E. Ivanova
%T The evolution equations of intensive deformation problems of elastic inhomogeneous medium
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2015
%P 76-90
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a7/
%G ru
%F DVMG_2015_15_1_a7
V. E. Ragozina; Yu. E. Ivanova. The evolution equations of intensive deformation problems of elastic inhomogeneous medium. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 76-90. http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a7/

[1] D. Blend, Nelineinaya dinamicheskaya teoriya uprugosti, Mir, Moskva, 1972, 183 pp. | MR

[2] A. G. Kulikovskii, E. I. Sveshnikova, Nelineinye volny v uprugikh sredakh, Moskovskii litsei, Moskva, 1998, 412 pp.

[3] A. A. Burenin, A. D. Chernyshov, “Udarnye volny v izotropnom uprugom prostranstve”, Prikl. matematika i mekhanika, 42:4 (1978), 711–717

[4] M. Van-Daik, Metody vozmuschenii v mekhanike zhidkosti, Mir, Moskva, 1967, 239 pp.

[5] Dzh. Koul, Metody vozmuschenii v prikladnoi matematike, Mir, Moskva, 1972, 275 pp. | MR

[6] A. Kh. Naife, Vvedenie v metody vozmuschenii, Mir, Moskva, 1984, 535 pp. | MR

[7] J. D. Achenbach, D. P. Reddy, “Note of wave propogation in lineary viscoelastic media”, ZAMP, 18:1 (1967), 141–144 | DOI | MR | Zbl

[8] L. A. Babicheva, G. I. Bykovtsev, N. D. Verveiko, “Luchevoi metod resheniya dinamicheskikh zadach v uprugovyazkoplasticheskikh sredakh”, Prikl. matematika i mekhanika, 37:1 (1973), 145–155 | Zbl

[9] A. A. Burenin, Yu. A. Rossikhin, “Luchevoi metod resheniya odnomernykh zadach nelineinoi dinamicheskoi teorii uprugosti s ploskimi poverkhnostyami silnykh razryvov”, Prikladnye zadachi mekhaniki deformiruemykh sred, Izd-vo DVO AN SSSR, Vladivostok, 1991, 129–137

[10] A. A. Burenin, “Ob odnoi vozmozhnosti postroeniya priblizhennykh reshenii nestatsionarnykh zadach dinamiki uprugikh sred pri udarnykh vozdeistviyakh”, Dalnevostochnyi mat. sb., 1999, no. 8, 49–72

[11] Dzh. Uizem, Lineinye i nelineinye volny, Mir, Moskva, 1977, 622 pp. | MR

[12] V. E. Ragozina, Yu. E. Ivanova, “Ob evolyutsionnykh uravneniyakh zadach udarnogo deformirovaniya s ploskimi poverkhnostyami razryvov”, Vychislitelnaya mekhanika sploshnykh sred, 2:3 (2009), 82–95

[13] A. A. Burenin, Yu. A. Rossikhin, “O vliyanii vyazkosti na kharakter rasprostraneniya ploskoi prodolnoi volny”, Prikl. mekhanika i tekhn. fizika, 1990, no. 6, 13–17 | MR

[14] Yu. E. Ivanova, “O strukture udarnoi volny deformatsii izmeneniya formy”, Materialy Vserossiiskoi konferentsii “Fundamentalnye i prikladnye voprosy mekhaniki”, posvyaschennoi 70-letiyu so dnya rozhdeniya akademika V.P. Myasnikova, Izd-vo IAPU DVO RAN, Vladivostok, 2006, 52–54

[15] Yu. N. Pelinovskii, V. E. Fridman, Yu. K. Engelbrekht, Nelineinye evolyutsionnye uravneniya, Valgus, Tallinn, 1984, 164 pp. | MR

[16] A. I. Lure, Nelineinaya teoriya uprugosti, Nauka, Moskva, 1980, 512 pp. | MR

[17] T. Tomas, Plasticheskoe techenie i razrushenie v tverdykh telakh, Mir, Moskva, 1964, 308 pp.

[18] G. I. Bykovtsev, D. D. Ivlev, Teoriya plastichnosti, Dalnauka, Vladivostok, 1998, 528 pp.