The Lagrange multiplier method in the finite convex programming problem
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 53-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the possibility of using the modified Lagrange's function for solving of a finite-dimensional convex programming problem. Convergence of the modified duality method is proved under the most general assumptions concerning of initial problem.
@article{DVMG_2015_15_1_a4,
     author = {A. Zhiltsov and R. V. Namm},
     title = {The {Lagrange} multiplier method in the finite convex programming problem},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {53--60},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a4/}
}
TY  - JOUR
AU  - A. Zhiltsov
AU  - R. V. Namm
TI  - The Lagrange multiplier method in the finite convex programming problem
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2015
SP  - 53
EP  - 60
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a4/
LA  - ru
ID  - DVMG_2015_15_1_a4
ER  - 
%0 Journal Article
%A A. Zhiltsov
%A R. V. Namm
%T The Lagrange multiplier method in the finite convex programming problem
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2015
%P 53-60
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a4/
%G ru
%F DVMG_2015_15_1_a4
A. Zhiltsov; R. V. Namm. The Lagrange multiplier method in the finite convex programming problem. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 53-60. http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a4/

[1] D. Bertsekas, Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M, 1987 | MR

[2] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[3] E. G. Golshtein, N. V. Trertyakov, Modifitsirovannye funktsii Lagranzha. Teoriya i metoda optimizatsii, Nauka, M., 1989 | MR

[4] D. P. Bertsekas, Convex Optimization Theory, Athena Scientific, Belmont, Masachusetts, 2009 | MR | Zbl

[5] K. Grossman, A. A. Kaplan, Nelineinoe programmirovanie na osnove bezuslovnoi minimizatsii, Nauka, Novosibirsk, 1981

[6] A. S. Antipin, A. I. Golikov, E. V. Khoroshilova, “Funktsiya chuvstvitelnosti, ee svoistva i prilozheniya”, Zh. vychisl. matem. i matem. fiz., 51:12 (2011), 1–17 | MR

[7] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, M., Mir, 1979 | MR

[8] A. Kufner, S. Fuchik, Nelineinye differentsialnye uravneniya, M., Nauka, 1988 | MR

[9] Yu. E. Nesterov, Vvedenie v vypukluyu optimizatsiyu, M., MTsNMO, 2010