Some integral representations of hypergeometric function
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 38-40
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article we prove two integral representations of hypergeometric function.
@article{DVMG_2015_15_1_a2,
author = {V. A. Bykovskii and D. A. Frolenkov},
title = {Some integral representations of hypergeometric function},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {38--40},
year = {2015},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a2/}
}
V. A. Bykovskii; D. A. Frolenkov. Some integral representations of hypergeometric function. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 38-40. http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a2/
[1] N. V. Kuznetsov, “Svërtka koeffitsientov Fure ryadov Eizenshteina–Maassa”, Zap. nauchn. seminar LOMI, 129 (1983), 43–84 | MR | Zbl
[2] V. Bykovskii, N. Kuznetsov, A. Vinogradov, “Generalized summation formula for inhomogeneous convolution”, In Automorphic functions and their applications, Acad. Sci. USSR Inst. Appl. Math., Khabarovsk, 1990, 18–63 | MR | Zbl
[3] V. A. Bykovskii, D. A. Frolenkov, “O vtorom momente L-ryadov golomorfnykh parabolicheskikh form na kriticheskoi pryamoi”, Doklady Akademii nauk, 463:2 (2015), 1–4
[4] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii II, “Nauka”, M., 1974