Carleman estimates of solutions of the Neumann problem for a parabolic equation
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive a new Carleman estimates for the Neumann problem for a parabolic equation and Laplace equation.
@article{DVMG_2015_15_1_a0,
     author = {E. V. Amosova},
     title = {Carleman estimates of solutions of the {Neumann} problem for a parabolic equation},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a0/}
}
TY  - JOUR
AU  - E. V. Amosova
TI  - Carleman estimates of solutions of the Neumann problem for a parabolic equation
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2015
SP  - 3
EP  - 20
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a0/
LA  - ru
ID  - DVMG_2015_15_1_a0
ER  - 
%0 Journal Article
%A E. V. Amosova
%T Carleman estimates of solutions of the Neumann problem for a parabolic equation
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2015
%P 3-20
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a0/
%G ru
%F DVMG_2015_15_1_a0
E. V. Amosova. Carleman estimates of solutions of the Neumann problem for a parabolic equation. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 3-20. http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a0/

[1] J.-L. Lions, “Are the connections between turbulence and controllability?”, Lecture Notes in Control Inform. Sci., V (1990), 144

[2] J.-L. Lions, “Remarques sur la controllabilite approchee”, Control of Distributed Systems, 3 (1990), 77–87 | MR | Zbl

[3] A. V. Fursikov, O. Yu. Emanuilov, “Tochnaya lokalnaya upravlyaemost dvumernykh uravnenii Nave-Stoksa”, Matem. sb., 187:9 (1996), 102–138 | DOI | MR

[4] A. V. Fursikov, O. Yu. Emanuilov, “Lokalnaya tochnaya upravlyaemost uravnenii Bussineska”, Vestn. RUDN, ser. Matem., 3:1 (1996), 177–194 | Zbl

[5] A. V. Fursikov, O. Yu. Emanuilov, “Tochnaya upravlyaemost uravnenii Nave-Stoksa i Bussineska”, Uspekhi matematicheskikh nauk, 54:3(327) (1999), 93–142 | DOI | MR

[6] A. V. Fursikov, O. Yu. Imanuvilov, “Local exact controllability of the Navier-Stokes equations”, C. R. Acad. Sci., Paris, Serie I., 323 (1996), 275–280 | MR | Zbl

[7] A. V. Fursikov, O. Yu. Imanuvilov, “Local Exact Boundary Controllability of the Boussinesque Equations”, SIAM J. Control Optim., 36:2 (1998), 391–421 | DOI | MR | Zbl

[8] A. V. Fursikov, O. Yu. Imanuvilov, “On controllability of certain systems simulating a fluid flow”, IMA Vol. Math.Appl., 68 (1995), 149–184 | MR | Zbl

[9] O. Yu. Imanuvilov, “Local exact controllability for the 2-D Navier-Stokes equations with the Navier slip boundary conditions”, Turbulence Modeling and Vortex Dynamics. Lecture Notes in Physics., 491 (1997), 148–168 | DOI | MR | Zbl

[10] A. V. Fursikov, O. Yu. Imanuvilov, “On exact boundary zero-controllability of two-dimensional Navier-Stokes equations”, Acta Appl. Math., 37 (1994), 67–76 | DOI | MR | Zbl

[11] J. I. Diaz, A. V. Fursikov, “Approximate controllability of the Stokes system on cylinders by external unidirectional forces”, J. Math. Pures Appl., 76 (1997), 353–375 | DOI | MR | Zbl

[12] C. Fabre, J.-P. Puel, E. Zuazua, “Approximate controllability of the semilinear heat equation”, Proc. Roy.Edinburgh. Sect.A., 125 (1995), 31–61 | DOI | MR | Zbl

[13] L. A. Fernandez, E. Zuazua, “Approximate controllability of the semilinear heat equation involving gradient terms”, J. Optim. Theory Appl., 1999 | MR

[14] O. Yu. Emanuilov, “Tochnaya upravlyaemost polulineinogo parabolicheskogo uravneniya”, Vestnik Ros. Univ. Druzhby Nar. Ser. matem., 1 (1994), 109–116 | Zbl

[15] O. Yu. Emanuilov, “Granichnoe upravlenie polulineinymi evolyutsionnymi uravneniyami”, Uspekhi matematicheskikh nauk, 44:6 (1988), 183–184 | MR | Zbl

[16] O. Yu. Imanuvilov, “Local exact controllability for the 2-D Navier-Stokes equations with the Navier slip boundary conditions”, Lecture Notes in Phys., 491 (1997), 148–168 | MR | Zbl

[17] A. V. Fursikov, Optimalnoe upravlenie raspredelitelnymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, N., 1999

[18] S. Ervedoza, O. Glass, S. Guerrero, “Local exact controllability for the 1-D compressible Navier-Stokes equation”, Seminaire Laurent Schwarts - EDP et applications, XXXIX (2011), 14

[19] E. V. Amosova, “Exact Local Controllability for the Equations of Viscous Gas Dynamics”, Differential Equations, 47:12 (2011), 1776–1795 | DOI | MR | Zbl

[20] J.-M. Coron, “On the controllability of 2-D incompressible perfect fluids”, J. Math. Pures et Appl., 75 (1996), 155–188 | MR | Zbl

[21] J.-M. Coron, “Controlabilite exacte frontiere de l'equation d'Euler des fluides parfaits incompressibles bidimensionnels”, C. R. Acad. Sci. Paris. Ser. I, 317 (1993), 271–276 | MR | Zbl

[22] J.-M. Coron, A. V. Fursikov, “Global exact controllability of the 2D Navier-Stokes equations on manifold without boundary”, Russian Journal of Math. Physics., 4:3 (1996), 1–20 | MR

[23] V. Barbu, “Exact controllability of superlinear heat equation”, Applied Mathematics and Optimization, 42 (2000), 73–89 | DOI | MR | Zbl

[24] V. Barbu, “Controllability of parabolic and Navier-Stokes equations”, Scientiae Mathematicae Japonicae, 56 (2002), 143-211 | MR | Zbl

[25] C. Bardos, G. Lebeau, J. Rauch, “Controle et stabilisation de l'equation des ondes”, SIAM Journal on Control and Optimization, 30 (1992), 1024–1065 | DOI | MR | Zbl

[26] E. Fernandez-Cara, “Null controllability of the semilinear heat equation”, ESAIM: Control Optimization and Calculus of Variations, 2 (1997), 87–103 | DOI | MR | Zbl

[27] G. Aniculaesei, S. Anita, “Null controllability of a nonlinear heat equation”, Abstract and Applied Analysis, 7 (2002), 375–383 | DOI | MR | Zbl

[28] J. Klamka, “Constrained controllability of semilinear systems with multiple delays in control”, Bulletin of the Polish Academy of Sciences. Technical Sciences, 52 (2004), 25–30 | Zbl

[29] K. Sakthivel, K. Balachandran, B. R. Nagaraj, “On a class of nonlinear parabolic control systems with memory effects”, International Journal of Control, 81 (2008), 764–777 | DOI | MR | Zbl

[30] K. Sakthivel, K. Balachandran, S. S. Sritharan, “Exact controllability of nonlinear diffusion equations arising in reactor dynamics”, Nonlinear Analysis: Real World Applications, 9 (2008), 2029–2054 | DOI | MR | Zbl

[31] A. Kazemi, M. Klibanov, “Stability estimates for ill-posed Cauchy problems involving hyperbolic equations and inequalities”, Appl. Anal., 50 (1993), 93–102 | DOI | MR | Zbl

[32] I. Lasiecka I, R. Triggiani, “Carleman estimates and exact boundary controllability for a system of coupled, nonconservative second-order hyperbolic equations”, Lecture Notes in Pure Appl. Math., 188 (1997), 215–243 | MR | Zbl

[33] C. Fabre, “Uniqueness results for Stokes equations and theirconsequences in linear and nonlinear control problems”, ESAIM, Control Optim. Caic. Var., 1 (1996), 267–302 | DOI | MR | Zbl

[34] O. Yu. Imanuvilov, M. Yamamoto, “On Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations”, Publ. Res. Inst. Math. Sci., 39 (2003), 227–274 | DOI | MR | Zbl

[35] A. Ruiz, “Unique continuation for weak solutions of the wave equation plus a potential”, J. Math. Pures Appl., 71 (1992), 455–467 | MR | Zbl

[36] D. Tatary, “A prior estimates of Carleman's type in domains with boundary”, J. Math. Pures Appl., 73 (1994), 355–387 | MR

[37] D. Chae, O. Yu. Imanuvilov, S. M. Kim, “Exact controllability for semilinear parabolic equations with Neumann boundary conditions”, J. of Dynamical and Control Systems, 2 (1996), 449–483 | DOI | MR

[38] K. Sakthivel, G. Devipriya, K. Balachandran, J.-H. Kim, “Exact null controllability of a semilinear parabolic equation arising in finance”, Nonlinear Analysis: Hybrid Systems, 3 (2009), 565–577 | DOI | MR

[39] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971