Statistical modeling of the electron transport in visualization problems of inhomogeneous media
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 217-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the problems of mathematical modeling electron transport in matter. We propose new weighted Monte Carlo method for solving the electron transfer equation. The numerical experiments with application to the problems of electronic single-beam probing inhomogeneous media are carried out. The influence of multiple scattered electrons on the image quality is experimentally studied.
@article{DVMG_2014_14_2_a7,
     author = {A. S. Zhuplev and I. V. Prokhorov and I. P. Yarovenko},
     title = {Statistical modeling of the electron transport in visualization problems of inhomogeneous media},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {217--230},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a7/}
}
TY  - JOUR
AU  - A. S. Zhuplev
AU  - I. V. Prokhorov
AU  - I. P. Yarovenko
TI  - Statistical modeling of the electron transport in visualization problems of inhomogeneous media
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2014
SP  - 217
EP  - 230
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a7/
LA  - ru
ID  - DVMG_2014_14_2_a7
ER  - 
%0 Journal Article
%A A. S. Zhuplev
%A I. V. Prokhorov
%A I. P. Yarovenko
%T Statistical modeling of the electron transport in visualization problems of inhomogeneous media
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2014
%P 217-230
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a7/
%G ru
%F DVMG_2014_14_2_a7
A. S. Zhuplev; I. V. Prokhorov; I. P. Yarovenko. Statistical modeling of the electron transport in visualization problems of inhomogeneous media. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 217-230. http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a7/

[1] D. M. Sindo, T. Oikava, Analiticheskaya elektronnaya prosvechivayuschaya mikoroskpiya, Tekhnosfera, M., 2006

[2] E. J. Kirkland, Advanced Computing in Electron Microscopy, Springer, New York Dordrecht Heidelberg, 2010

[3] N. F. Mott, “The Scattering of Fast Electrons by Atomic Nuclei”, Proc. Roy. Soc. (London), A124 (1929), 425-442 | DOI | Zbl

[4] V. A. Kuzyuk, A. X. Rakhmatulina, “Nekotorye asimptoticheskie zadachi teorii perenosa elektronov”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 15:5 (1975), 1248–1261 | MR

[5] M. E. Zhukovskii, S. V. Podolyako, R. V. Uskov, “Model individualnykh soudarenii dlya opisaniya perenosa elektronov v veschestve”, Matematicheskoe modelirovanie, 23:6 (2011), 147-160 | MR

[6] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61 (1961), 3–158 | MR

[7] T. A. Germogenova, Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[8] D. S. Anikonov, A. E. Kovtanyuk, I. V. Prokhorov, Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[9] E. G. Sheikin, “Modelnoe differentsialnoe sechenie uprugogo rasseyaniya elektronov na atomakh dlya modelirovaniya prokhozhdeniya elektronov v veschestve metodom Monte-Karlo”, Zhurnal tekhnicheskoi fiziki, 80:1 (2010), 3-11

[10] A. G. Maslovskaya, A. V. Sivunov, “Kompyuternoe modelirovanie metodom monte-karlo elektronnykh traektorii v polyarnykh dielektrikakh pri vozdeistvii elektronnymi puchkami srednikh energii”, Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2:1 (2012), 53-58

[11] G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | Zbl

[12] S. M. Ermakov, Metod Monte-Karlo v vychislitelnoi matematike, Binom. Laboratoriya znanii, Sankt-Peterburg, 2009

[13] I. V. Prokhorov, A. S. Zhuplev, “Ob effektivnosti metodov maksimalnogo secheniya v teorii perenosa izlucheniya”, Kompyuternye issledovaniya i modelirovanie, 5:4 (2013), 573-582

[14] A. S. Zhuplev, I. V. Prokhorov, “Raschet koeffitsientov oslableniya elektronnogo izlucheniya v zadannom diapazone energii”, Svidetelstvo o gosudarstvennoi registratsii programm dlya EVM 2014612192. Zaregistrirovano v Reestre programm dlya EVM, 20.02.2014

[15] A. S. Zhuplev, V. G. Nazarov, I. V. Prokhorov, E. V. Pustovalov, “Baza dannykh par khimicheskikh elementov, nerazlichimykh na nekotorom urovne energii pri elektronnom prosvechivanii”, Svidetelstvo o gosudarstvennoi registratsii bazy dannykh EVM 2014620106. Zaregistrirovano v Reestre baz dannykh, 15.01.2014

[16] I. M Sobol, Chislennye metody Monte-Karlo, M., Nauka, 1973 | MR

[17] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, “Algorithm of finding a body projection within an absorbing and scattering medium”, Inverse and III-Posed Problems, 18:8 (2011), 885-893 | MR

[18] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, “Zadacha odnorakursnogo zondirovaniya neizvestnoi sredy”, Sibirskii zhurnal industrialnoi matematiki, 14:2 (2011), 21-27 | MR | Zbl

[19] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, “Integrodifferentsialnyi indikator dlya zadachi odnorakursnoi tomografii”, Sib. zhurn. industr. matem., 17:2 (2014), 3–10