Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2014_14_2_a5, author = {V. N. Dubinin}, title = {Two-point boundary distortion estimate for {Schwarzian} derivative of holomorphic function}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {191--199}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a5/} }
TY - JOUR AU - V. N. Dubinin TI - Two-point boundary distortion estimate for Schwarzian derivative of holomorphic function JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2014 SP - 191 EP - 199 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a5/ LA - ru ID - DVMG_2014_14_2_a5 ER -
V. N. Dubinin. Two-point boundary distortion estimate for Schwarzian derivative of holomorphic function. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 191-199. http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a5/
[1] S. Kim, D. Minda, “Two-point distortion theorems for univalent function”, Pacific J. Math., 163 (1994), 137–157 | DOI | MR | Zbl
[2] W. Ma, D. Minda, “Two-point distortion for univalent functions”, J. Comput. Appl. Math., 105 (1999), 385–392 | DOI | MR | Zbl
[3] J. A. Jenkins, “On two-point distortion theorems for bounded univalent regular functions”, Kodai Math. J., 24:3 (2001), 329–338 | DOI | MR | Zbl
[4] D. Kraus, O. Roth, “Weighted distortion in conformal mapping in euclidean, hyperbolic and elliptic geometry”, Ann. Acad. Sci. Fenn. Math., 31 (2006), 111–130 | MR | Zbl
[5] M. D. Contreras, S. Díaz-Madrigal, A. Vasil'ev, “Digons and angular derivatives of analytic self-maps of the unit disk”, Complex Variables and Elliptic Equations, 52:8 (2007), 685–691 | DOI | MR | Zbl
[6] J. M. Anderson, A. Vasil'ev, “Lower Schwarz–Pick estimates and angular derivatives”, Ann. Acad. Sci. Fenn., 33 (2008), 101–110 | MR | Zbl
[7] V. Bolotnikov, M. Elin, D. Shoikhet, “Inequalities for angular derivatives and boundary interpolation”, Anal. Math. Phys., 3:1 (2013), 63–96 | DOI | MR | Zbl
[8] A. Frolova, M. Levenshtein, D. Shoikhet, A. Vasil'ev, “Boundary distortion estimates for holomorphic maps”, Published online: 18 December 2013, Complex Anal. Oper. Theory | MR
[9] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer, 1992 | MR | Zbl
[10] V. N. Dubinin, V. Yu. Kim, “Teoremy iskazheniya dlya regulyarnykh i ogranichennykh v kruge funktsii”, Zap. nauchn. semin. POMI, 350, 2007, 26–39 | MR
[11] R. Tauraso, F. Vlacci, “Rigidity at the boundary for holomorphic self-maps of the unit disk”, Complex Variables Theory Appl., 45:2 (2001), 151–165 | DOI | MR | Zbl
[12] D. Shoikhet, “Another look at the Burns–Krantz theorem”, J. Anal. Math., 105:1 (2008), 19–42 | DOI | MR | Zbl
[13] V. N. Dubinin, “O granichnykh znacheniyakh proizvodnoi Shvartsa regulyarnoi funktsii”, Matem. sb., 202:5 (2011), 29–44 | DOI | MR | Zbl
[14] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[15] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009
[16] W. K. Hayman, Myltivalent functions, Cambridge Univ. Press., Cambridge, 1994 | MR | Zbl
[17] V. N. Dubinin, “Lemma Shvartsa i otsenki koeffitsientov dlya regulyarnykh funktsii so svobodnoi oblastyu opredeleniya”, Matem. sb., 196:11 (2005), 53–74 | DOI | MR | Zbl