Two-point boundary distortion estimate for Schwarzian derivative of holomorphic function
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 191-199

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be a holomorphic function in the disk $|z|1$, $|f(z)|1$, and let $z_{1}, z_{2}$ are distinct boundary points of this disk in which the angular limits $f(z_{k})$, $k=1,2$, exist, $f(z_{1})\neq f(z_{2})$, $|f(z_{1})|=|f(z_{2})|=1$. Under some geometric constraints on $f$ the precise upper bound for $\textrm{Re} \{S_{f}(z_{1})+S_{f}(z_{2})\}$ is established. Here $S_{f}(z)$ means the Schwarzian derivative of the function $f$ at the point $z$.
@article{DVMG_2014_14_2_a5,
     author = {V. N. Dubinin},
     title = {Two-point boundary distortion estimate for {Schwarzian} derivative of holomorphic function},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {191--199},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a5/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Two-point boundary distortion estimate for Schwarzian derivative of holomorphic function
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2014
SP  - 191
EP  - 199
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a5/
LA  - ru
ID  - DVMG_2014_14_2_a5
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Two-point boundary distortion estimate for Schwarzian derivative of holomorphic function
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2014
%P 191-199
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a5/
%G ru
%F DVMG_2014_14_2_a5
V. N. Dubinin. Two-point boundary distortion estimate for Schwarzian derivative of holomorphic function. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 191-199. http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a5/