On the distribution of integer points on the determinant surface
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 156-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper offers a new method for ergodic properties studying of integer points on the determinant surface. This approach is based on the spectral theory of automorphic Laplacian.
@article{DVMG_2014_14_2_a2,
     author = {V. A. Bykovskii},
     title = {On the distribution of integer points on the determinant surface},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {156--159},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a2/}
}
TY  - JOUR
AU  - V. A. Bykovskii
TI  - On the distribution of integer points on the determinant surface
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2014
SP  - 156
EP  - 159
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a2/
LA  - ru
ID  - DVMG_2014_14_2_a2
ER  - 
%0 Journal Article
%A V. A. Bykovskii
%T On the distribution of integer points on the determinant surface
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2014
%P 156-159
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a2/
%G ru
%F DVMG_2014_14_2_a2
V. A. Bykovskii. On the distribution of integer points on the determinant surface. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 156-159. http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a2/

[1] E. V. Podsypanin, “Raspredelenie tselykh tochek na determinantnoi poverkhnosti”, Zap. nauchn. seminar LOMI, 93 (1980), 30–40 | MR | Zbl

[2] A. V. Ustinov, “O chisle reshenii sravneniya $xy \equiv l (mod q)$ pod grafikom dvazhdy nepreryvno differentsiruemoi funktsii”, Algebra i analiz, 20:5 (2008), 186–216 | MR

[3] N. V. Kuznetsov, “Svërtka koeffitsientov Fure ryadov Eizenshteina–Maassa”, Zap. nauchn. seminar LOMI, 129 (1983), 43–84 | MR | Zbl

[4] V. Bykovskii, N. Kuznetsov, A. Vinogradov, “Generalized summation formula for inhomogeneous convolution”, Automorphic functions and their applications, Acad. Sci. USSR Inst. Appl. Math., Khabarovsk, 1990, 18–63 | MR

[5] Y. Motohashi, “The binary additive divisor problem”, Ann. Scient. École Norm. Sup, 4e Sér., 27 (1994), 529–572 | MR | Zbl