On ring $Q$-mappings with respect to non-conformal modulus
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 257-269

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the development of the theory of open discrete ring $Q$-mappings with respect to $p$-modulus in ${\Bbb R}^n$, $n\geqslant2$. For such mappings, it is established a distance distortion estimate of the logarithmic type. It is also established a measure estimate for the ball image. Finally, it is investigated the asymptotic behavior for homeomorphic mappings.
@article{DVMG_2014_14_2_a11,
     author = {R. R. Salimov},
     title = {On ring $Q$-mappings with respect to non-conformal modulus},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {257--269},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a11/}
}
TY  - JOUR
AU  - R. R. Salimov
TI  - On ring $Q$-mappings with respect to non-conformal modulus
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2014
SP  - 257
EP  - 269
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a11/
LA  - ru
ID  - DVMG_2014_14_2_a11
ER  - 
%0 Journal Article
%A R. R. Salimov
%T On ring $Q$-mappings with respect to non-conformal modulus
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2014
%P 257-269
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a11/
%G ru
%F DVMG_2014_14_2_a11
R. R. Salimov. On ring $Q$-mappings with respect to non-conformal modulus. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 257-269. http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a11/