On ring $Q$-mappings with respect to non-conformal modulus
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 257-269.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the development of the theory of open discrete ring $Q$-mappings with respect to $p$-modulus in ${\Bbb R}^n$, $n\geqslant2$. For such mappings, it is established a distance distortion estimate of the logarithmic type. It is also established a measure estimate for the ball image. Finally, it is investigated the asymptotic behavior for homeomorphic mappings.
@article{DVMG_2014_14_2_a11,
     author = {R. R. Salimov},
     title = {On ring $Q$-mappings with respect to non-conformal modulus},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {257--269},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a11/}
}
TY  - JOUR
AU  - R. R. Salimov
TI  - On ring $Q$-mappings with respect to non-conformal modulus
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2014
SP  - 257
EP  - 269
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a11/
LA  - ru
ID  - DVMG_2014_14_2_a11
ER  - 
%0 Journal Article
%A R. R. Salimov
%T On ring $Q$-mappings with respect to non-conformal modulus
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2014
%P 257-269
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a11/
%G ru
%F DVMG_2014_14_2_a11
R. R. Salimov. On ring $Q$-mappings with respect to non-conformal modulus. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 257-269. http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a11/

[1] F.W. Gehring, “Lipschitz mappings and the $p$-capacity of ring in $n$-space”, Advances in the theory of Riemann surfaces (Proc. Conf. Stonybrook, N.Y., 1969), Ann. of Math. Studies., 66, 1971, 175–193 | MR

[2] O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, Moduli in Modern Mapping Theory, Springer Monographs in Mathematies, Springer, New York, 2009 | MR | Zbl

[3] R.R. Salimov, “Absolyutnaya nepreryvnost na liniyakh i differentsiruemost odnogo obobscheniya kvazikonformnykh otobrazhenii”, Izv. RAN. Ser. matem., 72:5 (2008), 141–-148 | DOI | MR | Zbl

[4] A. Golberg, “Differential properties of $(\alpha,Q)$-homeomorphisms”, Further Progress in Analysis, World Scientific Publ., 2009, 218–228 | DOI | MR | Zbl

[5] A. Golberg, “Integrally quasiconformal mappings in space”, Zbirnik prats Іn-tu matematiki NAN Ukraïni, 7:2 (2010), 53–64 | MR | Zbl

[6] C.J. Bishop, V.Ya. Gutlyanskii, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Intern. Journ. Math. and Math. Scie., 22 (2003), 1397–1420 | DOI | MR | Zbl

[7] Yu.F. Strugov, “Kompaktnost klassov otobrazhenii, kvazikonformnykh v srednem”, DAN SSSR, 243:4 (1978), 859–861 | MR | Zbl

[8] R.R. Salimov, E.A. Sevostyanov, “Teoriya koltsevykh $Q$–otobrazhenii v geometricheskoi teorii funktsii”, Matem. sbornik, 201:6 (2010), 131–-158 | DOI | MR

[9] R.R. Salimov, E.A. Sevostyanov, “O vnutrennikh dilatatsiyakh $Q$–otobrazhenii s neogranichennoi kharakteristikoi”, Ukr. matem. vestnik, 8:1 (2011), 129–143 | MR | Zbl

[10] R.R. Salimov, “On finitely Lipschitz space mappings”, Sib. elektron. matem. izv., 8 (2011), 284–295 | MR

[11] R.R. Salimov, “Ob otsenke mery obraza shara”, Sib. matem. zhurn., 53:4 (2012), 920–-930 | MR | Zbl

[12] R.R. Salimov, “O lipshitsevosti odnogo klassa otobrazhenii”, Matem. zametki, 94:4 (2013), 591–599 | DOI | MR | Zbl

[13] V.I. Kruglikov, “Emkosti kondensatorov i prostranstvennye otobrazheniya, kvazikonformnye v srednem”, Matem. sbornik., 130:2 (1986), 185–206 | MR

[14] S.K. Vodopyanov, A.D. Ukhlov, “Operatory superpozitsii v prostranstvakh Soboleva”, Izv. vuzov. Matem., 2002, no. 10, 11–-33 | MR

[15] S.K. Vodopyanov, A.D. Ukhlov, “Operatory superpozitsii v prostranstvakh Lebega i differentsiruemost kvaziadditivnykh funktsii mnozhestva”, Vladikavk. matem. zhurn., 4:1 (2002), 11–-33 | MR | Zbl

[16] S.K. Vodop'yanov, “Description of composition operators of Sobolev spaces”, Doklady Mathematics, 71:1 (2005), 5–-9 | MR

[17] S.K. Vodopyanov, “Composition operators on Sobolev spaces”, Complex Analysis and Dynamical Systems II, Contemporary Mathematics Series,, 382, 2005, 401–-415 | DOI | MR | Zbl

[18] D.A. Kovtonyuk, V.I. Ryazanov, R.R. Salimov, E.A. Sevost’yanov, “On mappings in the Orlicz-Sobolev classes”, Ann. Univ. Bucharest, Ser. Math, 3:1 (2012), 67–-78 | MR | Zbl

[19] D.A. Kovtonyuk, V.I. Ryazanov, R.R. Salimov, E.A. Sevostyanov, “K teorii klassov Orlicha–Soboleva”, Algebra i analiz, 25:6 (2013), 50–102 | MR

[20] D.A. Kovtonyuk, V.I. Ryazanov, R.R. Salimov, E.A. Sevostyanov, “Granichnoe povedenie klassov Orlicha–Soboleva”, Matem. zametki, 95:4 (2014), 564–576 | DOI | MR

[21] E.S. Afanaseva, V.I. Ryazanov, R.R. Salimov, “Ob otobrazheniyakh v klassakh Orlicha–Soboleva na rimanovykh mnogoobraziyakh”, Ukr. mat. vestnik, 8:3 (2011), 319–-342 | MR

[22] T. Lomako, R. Salimov, E. Sevost'yanov, “On equicontinuity of solutions to the Beltrami equations”, Ann. Univ. Bucharest, Math. Ser, LIX:2 (2010), 263–274 | MR | Zbl

[23] D.A. Kovtonyuk, I.V. Petkov, V.I. Ryazanov, R.R. Salimov, “Granichnoe povedenie i zadacha Dirikhle dlya uravnenii Beltrami”, Algebra i analiz, 25:4 (2013), 101–-124 | MR

[24] S. Saks, Teoriya integrala, IL, M., 1949 | Zbl

[25] J. Väisälä, Conformal Geometry and Quasiregular mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin, 1971 | MR

[26] S. Rickman, Quasiregular mappings, Results in Mathematic and Related Areas (3), 26, Springer-Verlag, Berlin, 1993 | MR | Zbl

[27] O. Martio, S. Rickman and J. Väisälä, “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1, 448 (1969), 1–40 | MR

[28] V.M. Goldshtein, Yu.G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[29] V.G. Mazya, “Klassy oblastei, mer i emkostei v teorii prostranstv differentsiruemykh funktsii”, Analiz – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 26, VINITI, M., 1988, 159–-228 | MR

[30] G.T. Whyburn, Analytic topology, American Mathematical Society, Rhode Island, 1942 | MR