On minimal Leibniz\,--\,Poisson algebras of polynomial growth
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 248-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\gamma_n({\mathbf V})\}_{n\geq 1}$ be the sequence of proper codimension growth of a variety of Leibniz – Poisson algebras ${\mathbf V}$. We give one class of minimal varieties of Leibniz – Poisson algebras of polynomial growth of the sequence $\{\gamma_n({\mathbf V})\}_{n\geq 1}$, i.e. the sequence of proper codimensions of any such variety grows as a polynomial of some degree $k$, but the sequence of proper codimensions of any proper subvariety grows as a polynomial of degree strictly less than $k$.
@article{DVMG_2014_14_2_a10,
     author = {S. M. Ratseev},
     title = {On minimal {Leibniz\,--\,Poisson} algebras of polynomial growth},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {248--256},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a10/}
}
TY  - JOUR
AU  - S. M. Ratseev
TI  - On minimal Leibniz\,--\,Poisson algebras of polynomial growth
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2014
SP  - 248
EP  - 256
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a10/
LA  - ru
ID  - DVMG_2014_14_2_a10
ER  - 
%0 Journal Article
%A S. M. Ratseev
%T On minimal Leibniz\,--\,Poisson algebras of polynomial growth
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2014
%P 248-256
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a10/
%G ru
%F DVMG_2014_14_2_a10
S. M. Ratseev. On minimal Leibniz\,--\,Poisson algebras of polynomial growth. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 248-256. http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a10/

[1] S. M. Ratseev, “Kommutativnye algebry Leibnitsa–Puassona polinomialnogo rosta”, Vestn. Sam. gos. un-ta. Estestv. seriya, 94:3/1 (2012), 54–65

[2] Yu. A. Bakhturin, Tozhdestva v algebrakh Li, Nauka, M., 1985

[3] A. Giambruno, M. V. Zaicev, Polynomial Identities and Asymptotic Methods, v. 122, Providence R.I., AMS Mathematical Surveys and Monographs, 2005 | MR | Zbl

[4] L. E. Abanina, S. M. Ratseev, “Mnogoobrazie algebr Leibnitsa, svyazannoe so standartnymi tozhdestvami”, Vestn. Sam. gos. un-ta. Estestv. seriya, 40:6 (2005), 36–50 | Zbl

[5] A. Giambruno, D. La Mattina, V. M. Petrogradsky, “Matrix algebras of polynomial codimention growth”, Israel J. Math., 158 (2007), 367–378 | DOI | MR | Zbl

[6] D. La Mattina, “Varieties of almost polynomial growth: classifying their subvarieties”, Manuscripta Math., 123:2 (2007), 185–203 | DOI | MR | Zbl

[7] S. P. Mishchenko, A. Valenti, “A Leibniz variety with almost polynomial growth”, J. Pure Appl. Algebra, 202:1-3 (2005), 82–101 | DOI | MR | Zbl