Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2014_14_2_a0, author = {G. V. Alekseev and A. V. Lobanov}, title = {The stability estimates in two-dimensional cloaking problem}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {127--140}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a0/} }
TY - JOUR AU - G. V. Alekseev AU - A. V. Lobanov TI - The stability estimates in two-dimensional cloaking problem JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2014 SP - 127 EP - 140 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a0/ LA - ru ID - DVMG_2014_14_2_a0 ER -
G. V. Alekseev; A. V. Lobanov. The stability estimates in two-dimensional cloaking problem. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 127-140. http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a0/
[1] J. B. Pendry, D. Shurig and D. R. Smith, “Controlling electromagnetic fields”, Science., 312:1 (2006), 1780–1782 | DOI | MR | Zbl
[2] H. Chen, B. I. Wi, B. Zhang, J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak”, Phys. Rev. Lett., 99 (2007), 063903 | DOI
[3] S. A. Cummer, B. I. Popa, D. Schurig et al., “Scattering theory derivation of a 3D acoustic cloaking shell”, Phys. Rev. Lett., 100:2 (2008), 024301 | DOI
[4] G. V. Alekseev, V. G. Romanov, “Ob odnom klasse nerasseivayuschikh akusticheskikh obolochek dlya modeli anizotropnoi akustiki”, Sib. zhurn. industr. matem., 14:2 (2011), 15–20 | MR | Zbl
[5] A. E. Dubinov, L. A. Mytareva, “Maskirovka materialnykh tel metodom volnovogo obtekaniya”, Uspekhi fiz. nauk., 180:5 (2010), 475–501 | DOI
[6] Yu. I. Bobrovnitskii, “Nauchnye osnovy akusticheskogo stelsa”, DAN, 442:1 (2012), 41–44
[7] G. V. Alekseev, “Optimizatsiya v zadachakh maskirovki materialnykh tel metodom volnovogo obtekaniya”, DAN, 449:6 (2013), 652–656 | MR
[8] G. V. Alekseev, “Cloaking via impedance boundary condition for 2–D Helmholtz equation”, Appl. Anal, 93:2 (2014), 254–268 | DOI | MR | Zbl
[9] G. V. Alekseev, R. V. Brizitskii, V. G. Romanov, “Otsenki ustoichivosti reshenii zadach granichnogo upravleniya dlya uravnenii Maksvela pri smeshannykh granichnykh usloviyakh”, DAN, 447:1 (2012), 7–12 | MR | Zbl
[10] G. V. Alekseev, R. V. Brizitskii, “Otsenki ustoichivosti reshenii zadach upravleniya dlya uravnenii Maksvela pri smeshannykh granichnykh usloviyakh”, Differentsialnye uravneniya, 49:8 (2013), 993–1004 | MR | Zbl
[11] L. Beilina, M. V. Klibanov, Approximate global convergence and adaptivity for coefficient inverse problems, Springer, New York, 2012, 407 pp. | DOI | Zbl
[12] L. Beilina, M. V. Klibanov, “A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data”, J. Inverse Ill-Posed Problems, 20:4 (2012), 513–565 | DOI | MR | Zbl
[13] A. S. Ilinskii, V. V Kravtsov, A. G Sveshnikov, Matematicheskie modeli elektrodinamiki, Vysshaya shkola, Moskva, 1991
[14] M. A. Leontovich, Issledovaniya po rasprostraneniyu radiovoln, ZhETF, 1948
[15] F. Caconi, D. Colton, P. Monk, “The inverse electromagnetic scattering problem for a partially coated dielectric”, J. Comp. Appl. Math, 204:2 (2007), 256–267 | DOI | MR
[16] G. V. Alekseev, Optimizatsiya v statsionarnykh zadachakh teplomassoperenosa i magnitnoi gidrodinamiki, Nauchnyi Mir, Moskva, 2010
[17] J. M. Melenk, S. Sauter, “Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions”, Math. Comp, 79 (2010), 1871–1914 | DOI | MR | Zbl
[18] G. V. Alekseev, “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki”, DAN, 395:3 (2004), 322–325 | MR | Zbl