The stability estimates in two-dimensional cloaking problem
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 127-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider control problem for 2-D model of scattering E-polarized electromagnetic waves in unbounded medium containing dielectric obstacle with coated boundary. This problem arises when creating means of cloaking material objects. The role of control in control problem under study is played by boundary conductivity. Solvability of direct and control problems is proved and the optimality system is deduced. The uniqueness and stability of optimal solutions with respect to certain perturbations of both cost functional and incident wave are established.
@article{DVMG_2014_14_2_a0,
     author = {G. V. Alekseev and A. V. Lobanov},
     title = {The stability estimates in two-dimensional cloaking problem},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {127--140},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a0/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - A. V. Lobanov
TI  - The stability estimates in two-dimensional cloaking problem
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2014
SP  - 127
EP  - 140
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a0/
LA  - ru
ID  - DVMG_2014_14_2_a0
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A A. V. Lobanov
%T The stability estimates in two-dimensional cloaking problem
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2014
%P 127-140
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a0/
%G ru
%F DVMG_2014_14_2_a0
G. V. Alekseev; A. V. Lobanov. The stability estimates in two-dimensional cloaking problem. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 127-140. http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a0/

[1] J. B. Pendry, D. Shurig and D. R. Smith, “Controlling electromagnetic fields”, Science., 312:1 (2006), 1780–1782 | DOI | MR | Zbl

[2] H. Chen, B. I. Wi, B. Zhang, J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak”, Phys. Rev. Lett., 99 (2007), 063903 | DOI

[3] S. A. Cummer, B. I. Popa, D. Schurig et al., “Scattering theory derivation of a 3D acoustic cloaking shell”, Phys. Rev. Lett., 100:2 (2008), 024301 | DOI

[4] G. V. Alekseev, V. G. Romanov, “Ob odnom klasse nerasseivayuschikh akusticheskikh obolochek dlya modeli anizotropnoi akustiki”, Sib. zhurn. industr. matem., 14:2 (2011), 15–20 | MR | Zbl

[5] A. E. Dubinov, L. A. Mytareva, “Maskirovka materialnykh tel metodom volnovogo obtekaniya”, Uspekhi fiz. nauk., 180:5 (2010), 475–501 | DOI

[6] Yu. I. Bobrovnitskii, “Nauchnye osnovy akusticheskogo stelsa”, DAN, 442:1 (2012), 41–44

[7] G. V. Alekseev, “Optimizatsiya v zadachakh maskirovki materialnykh tel metodom volnovogo obtekaniya”, DAN, 449:6 (2013), 652–656 | MR

[8] G. V. Alekseev, “Cloaking via impedance boundary condition for 2–D Helmholtz equation”, Appl. Anal, 93:2 (2014), 254–268 | DOI | MR | Zbl

[9] G. V. Alekseev, R. V. Brizitskii, V. G. Romanov, “Otsenki ustoichivosti reshenii zadach granichnogo upravleniya dlya uravnenii Maksvela pri smeshannykh granichnykh usloviyakh”, DAN, 447:1 (2012), 7–12 | MR | Zbl

[10] G. V. Alekseev, R. V. Brizitskii, “Otsenki ustoichivosti reshenii zadach upravleniya dlya uravnenii Maksvela pri smeshannykh granichnykh usloviyakh”, Differentsialnye uravneniya, 49:8 (2013), 993–1004 | MR | Zbl

[11] L. Beilina, M. V. Klibanov, Approximate global convergence and adaptivity for coefficient inverse problems, Springer, New York, 2012, 407 pp. | DOI | Zbl

[12] L. Beilina, M. V. Klibanov, “A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data”, J. Inverse Ill-Posed Problems, 20:4 (2012), 513–565 | DOI | MR | Zbl

[13] A. S. Ilinskii, V. V Kravtsov, A. G Sveshnikov, Matematicheskie modeli elektrodinamiki, Vysshaya shkola, Moskva, 1991

[14] M. A. Leontovich, Issledovaniya po rasprostraneniyu radiovoln, ZhETF, 1948

[15] F. Caconi, D. Colton, P. Monk, “The inverse electromagnetic scattering problem for a partially coated dielectric”, J. Comp. Appl. Math, 204:2 (2007), 256–267 | DOI | MR

[16] G. V. Alekseev, Optimizatsiya v statsionarnykh zadachakh teplomassoperenosa i magnitnoi gidrodinamiki, Nauchnyi Mir, Moskva, 2010

[17] J. M. Melenk, S. Sauter, “Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions”, Math. Comp, 79 (2010), 1871–1914 | DOI | MR | Zbl

[18] G. V. Alekseev, “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki”, DAN, 395:3 (2004), 322–325 | MR | Zbl