Convergence to limit distributions in models of growing random networks
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 100-108
Cet article a éte moissonné depuis la source Math-Net.Ru
Asymptotics of differences between limit and prelimit node degree distributions in models of growing random networks are constructed. The rates of convergence, up to logarithmic factors, have power estimates.
@article{DVMG_2014_14_1_a9,
author = {G. Sh. Tsitsiashvili and M. A. Osipova},
title = {Convergence to limit distributions in models of growing random networks},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {100--108},
year = {2014},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a9/}
}
TY - JOUR AU - G. Sh. Tsitsiashvili AU - M. A. Osipova TI - Convergence to limit distributions in models of growing random networks JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2014 SP - 100 EP - 108 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a9/ LA - ru ID - DVMG_2014_14_1_a9 ER -
G. Sh. Tsitsiashvili; M. A. Osipova. Convergence to limit distributions in models of growing random networks. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a9/
[1] L. A. Barabasi, R. Albert, “Emergence of scaling in random networks”, Science, 286 (1999), 509–512 | DOI | MR | Zbl
[2] S. N. Dorogovtsev, J. F. Mendes, “Evolution of Networks”, Adv. Phys., 51:4 (2002), 1079–1187 | DOI
[3] S. L. Ginzburg, “Vliyanie struktury slozhnoi seti na svoistva dinamicheskikh protsessov na nei”, Pisma v ZhETF, 90:12 (2009), 873–878
[4] I. A. I.A. Evin, “Vvedenie v teoriyu slozhnykh setei”, Kompyuternye issledovaniya i modelirovanie, 2:2 (2010), 121–141
[5] A. M. Raigorodskii, “Modeli sluchainykh grafov i ikh primenenie”, Trudy MFTI, 2:4 (2010), 130–140 | MR