On Faedo--Galerkin methods and monotony in a non-cylindrical domain for a degenerate quasi-linear equation
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 73-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article a monotony method for nonstationary equations adapt to noncylindrical domains. Existence theorems are proved. A family of basic functions constructed. These functions have a smooth parameter and a completeness property for every one.
@article{DVMG_2014_14_1_a6,
     author = {A. G. Podgaev and N. E. Istomina},
     title = {On {Faedo--Galerkin} methods  and monotony in a non-cylindrical domain for a degenerate quasi-linear equation},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {73--89},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a6/}
}
TY  - JOUR
AU  - A. G. Podgaev
AU  - N. E. Istomina
TI  - On Faedo--Galerkin methods  and monotony in a non-cylindrical domain for a degenerate quasi-linear equation
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2014
SP  - 73
EP  - 89
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a6/
LA  - ru
ID  - DVMG_2014_14_1_a6
ER  - 
%0 Journal Article
%A A. G. Podgaev
%A N. E. Istomina
%T On Faedo--Galerkin methods  and monotony in a non-cylindrical domain for a degenerate quasi-linear equation
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2014
%P 73-89
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a6/
%G ru
%F DVMG_2014_14_1_a6
A. G. Podgaev; N. E. Istomina. On Faedo--Galerkin methods  and monotony in a non-cylindrical domain for a degenerate quasi-linear equation. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 73-89. http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a6/

[1] M. Gevrey, “Les equations paraboliques”, J. de Math., 9. (1913), 187–235

[2] I. G. Petrowsky, “Zur ersten Randwertaufgabe der Warmeleitungsgleichung”, Compositio math, 1 (1935), 389–419 | MR

[3] V. P. Mikhailov, “O zadache Dirikhle i pervoi smeshannoi zadache dlya parabolicheskogo uravneniya”, Dokl. AN SSSR, 140:2 (1961), 303–306

[4] V. P. Mikhailov, “O zadache Dirikhle dlya parabolicheskogo uravneniya”, Mat. sbornik, 61(103):1 (1963), 40–64

[5] S. G. Krein, G. I. Laptev, “Abstraktnaya skhema rassmotreniya parabolicheskikh zadach v netsilindricheskikh oblastyakh”, Differentsialnye uravneniya, 5:8 (1969), 1458–1469 | MR | Zbl

[6] R. Benabidallah, J. Ferreira, “On hyperbolic – parabolic equations with nonlinearity of Kirchhoff – Carrier type in domains with moving boundary”, Nonlinear Analysis, 37 (1999), 269–287 | DOI | MR | Zbl

[7] J. Ferreira, N. A. Lar'kin, “Global solvability of a mixed problem for a nonlinear hyperbolic – parabolic equation in noncylindrical domains”, Portugaliae Mathematica, 53:4 (1996), 381–395 | MR | Zbl

[8] P. V. Vinogradova, A. G. Zarubin, “O metode Galerkina dlya kvazilineinykh parabolicheskikh uravnenii v netsilindricheskoi oblasti”, Dalnevostochnyi mat. zhurnal., 3:1 (2002), 3–17

[9] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M, 1972, 588 pp. | MR

[10] S. N. Glazatov, “Nekotorye zadachi dlya dvazhdy nelineinykh parabolicheskikh uravnenii v netsilindricheskikh oblastyakh”, Dif. i integr. uravneniya mat. modeli, Tezisy dokladov mezhd. nauch. konferentsii, Chelyabinskii gos. un-t, Chelyabinsk, 2002, 31

[11] N. E. Istomina, A. G. Podgaev, “O razreshimosti zadachi dlya kvazilineinogo vyrozhdayuschegosya parabolicheskogo uravneniya v oblasti s netsilindricheskoi granitsei”, Dalnevostochnyi matematicheskii zhurnal, 1:1 (2000), 63–73

[12] E. G. Agapova, Issledovanie razreshimosti zadach dlya nestatsionarnykh vyrozhdayuschikhsya na reshenii nelineinykh uravnenii, Dis. ... kand. f.-m. nauk: 01.01.02., KhGTU, Khabarovsk, 2000

[13] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatorno-differentsialnye uravneniya, Mir, M., 1978, 336 pp.

[14] Yu. A. Dubinskii, “Kvazilineinye ellipticheskie i parabolicheskie uravneniya lyubogo poryadka”, Uspekhi matematicheskikh nauk, XXIII:1(139) (1968), 45–90 | MR

[15] G. V. Demidenko, Vvedenie v teoriyu sobolevskikh prostranstv, Uchebnoe posobie, Novosib. un-t., Novosibirsk, 1995, 111 pp. | MR | Zbl

[16] N. E. Istomina, Razvitie metoda monotonnosti na sluchai parabolicheskogo uravneniya v netsilindricheskoi oblasti, Preprint No 6 IPM DVO RAN, Dalnauka, Vladivostok, 2001, 40 pp.

[17] N. E. Istomina, A. G. Podgaev, “Teorema edinstvennosti dlya nelineinogo parabolicheskogo uravneniya v netsilindricheskoi oblasti”, Mat. zametki YaGU, 10:1 (2003), 27–33 | Zbl

[18] A. G. Podgaev, A. Z. Sin, “Ob odnom obobschenii lemmy Vishika – Dubinskogo i neravenstva Gronuolla”, Elektronnoe nauchnoe izdanie “Uchenye zametki TOGU”, 4:4 (2013), 2113–2118

[19] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M, 1973, 408 pp. | MR

[20] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M, 1968, 496 pp. | MR | Zbl