An arithmetic interpretation of a three-term identity from the elliptic functions theory
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 66-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article offers the proof of a three-term identity from the elliptic functions theory, based on Liouville's arithmetical methods.
@article{DVMG_2014_14_1_a5,
     author = {M. D. Monina},
     title = {An arithmetic interpretation of a three-term identity from the elliptic functions theory},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {66--72},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a5/}
}
TY  - JOUR
AU  - M. D. Monina
TI  - An arithmetic interpretation of a three-term identity from the elliptic functions theory
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2014
SP  - 66
EP  - 72
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a5/
LA  - ru
ID  - DVMG_2014_14_1_a5
ER  - 
%0 Journal Article
%A M. D. Monina
%T An arithmetic interpretation of a three-term identity from the elliptic functions theory
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2014
%P 66-72
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a5/
%G ru
%F DVMG_2014_14_1_a5
M. D. Monina. An arithmetic interpretation of a three-term identity from the elliptic functions theory. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 66-72. http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a5/

[1] A. Hurwitz, “Über die Weierstrass'sche $\sigma$-Funktion”, In Festschrift für H.A. Schwarz, Ges. Abh. Bd. 3, pp.722–730, Berlin, 1914, 133–141 | Zbl

[2] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, v. 2, Gos. izd. fiz.-mat. lit., Moskva, 1963

[3] A. E. Polischuk, Abelevy mnogoobraziya, teta-funktsii i preobrazovanie Fure, MTsNMO, Moskva, 2010

[4] J. V. Uspensky, M. A. Heaslet, Elementary Number Theory, McGraw-Hill Book Company, Inc., New York and London, 1939

[5] B. A. Venkov, Elementarnaya teoriya chisel, ONTI NKTP SSSR, M.; Leningrad, 1937

[6] Kenneth S. Williams, Number theory in the spirit of Liouville, London Mathematical Society Student Texts, 76, Cambridge University Press, 2011 | MR

[7] N. V. Budarina, V. A. Bykovskii, “Arifmeticheskaya priroda tozhdesv dlya troinogo i pyatikratnogo proizvedenii”, Dalnevostochnyi matematicheskii zhurnal, 11:2 (2011), 140–148 | MR

[8] V. A. Bykovskii, M. D. Monina, “Arifmeticheskie tozhdestva, assotsiirovannye s kvadratichnymi formami, i ikh prilozheniya”, Doklady Akademii nauk, 449:5 (2013), 503–506 | DOI | MR | Zbl

[9] V. A. Bykovskii, M. D. Monina, “Ob arifmeticheskoi prirode nekotorykh tozhdestv teorii ellipticheskikh funktsii”, Dalnevostochnyi matematicheskii zhurnal, 13:1 (2013), 15–34 | MR | Zbl

[10] V. A. Bykovskii, Moduli Eikhlera-Shimury, Preprint DVO RAN. Khabarovskoe otdelenie Instituta prikladnoi matematiki, Dalnauka, Vladivostok, 2001

[11] V. A. Bykovskii, “Obobschenie arifmeticheskikh tozhdestv Liuvillya i Skoruppy”, Doklady Akademii nauk, 432:6 (2010), 736–737 | MR | Zbl

[12] J. G. Huard, Z. M. Ou, B. K. Spearman and K. S. Williams, “Elementary evaluation of certain convolution sums involving divisor function”, Number Theory for the Millennium II, eds. M. A. Bennett, B. C. Berndt, N. Boston, H. G. Diamond, A. J. Hildebrand, W. Philipp, A. K. Pete, 2002, 229–274 | MR | Zbl