@article{DVMG_2014_14_1_a2,
author = {A. I. Gudimenko and M. A. Guzev},
title = {On invariant form of the mass conservation law},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {33--40},
year = {2014},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a2/}
}
A. I. Gudimenko; M. A. Guzev. On invariant form of the mass conservation law. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 33-40. http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a2/
[1] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauchnaya kniga, Novosibirsk, 1998
[2] S. P. Novikov, I. A. Taimanov, Sovremennye geometricheskie struktury i polya, MTsNMO, M, 2005
[3] M. M. Postnikov, Lektsii po geometrii. Semestr IV. Differentsialnaya geometriya. Ucheb. posobie dlya vuzov, Nauka. Gl. red. fiz.-mat. lit., M, 1988 | MR | Zbl
[4] I. Kolár, P. Michor, J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1993 | MR
[5] R. Darling, Differential Forms and Connections, Cambridge University Press, 1994 | MR | Zbl
[6] R. Palais, The geometrization of physics, National Tsing Hua University, Hsinchu, Taiwan, 1981
[7] D. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl
[8] C. Truesdell, R. Toupin, The classical field theories. In Encyclopedia of Physics edited by S. Flugge, Springer-Verlag, Berlin, Gottingen, Heidelberg, 1960 | MR | Zbl
[9] F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, Berlin, 1983 | MR | Zbl
[10] V. L. Berdichevskii, Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka. Gl. red. fiz.-mat. lit., M, 1983 | MR