Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2014_14_1_a0, author = {E. M. Vikhtenko and G. S. Woo and R. V. Namm}, title = {The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified {Lagrangian} functionals}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {6--17}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a0/} }
TY - JOUR AU - E. M. Vikhtenko AU - G. S. Woo AU - R. V. Namm TI - The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2014 SP - 6 EP - 17 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a0/ LA - ru ID - DVMG_2014_14_1_a0 ER -
%0 Journal Article %A E. M. Vikhtenko %A G. S. Woo %A R. V. Namm %T The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals %J Dalʹnevostočnyj matematičeskij žurnal %D 2014 %P 6-17 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a0/ %G ru %F DVMG_2014_14_1_a0
E. M. Vikhtenko; G. S. Woo; R. V. Namm. The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 6-17. http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a0/
[1] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974
[2] R. Glovinski, Zh. L. Lions, R. Tremoler, Chislennoe issledovanie variatsionnykh neravenstv, Mir, M, 1979 | MR
[3] G. Vu, R. V. Namm, S. A. Sachkov, “Iteratsionnyi metod poiska sedlovoi tochki dlya polukoertsitivnoi zadachi Sinorini, osnovannyi na modifitsirovannom funktsionale Lagranzha”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 26–36 | MR | Zbl
[4] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR
[5] G. Dyuvo, Zh.-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR
[6] A. M. Khludnev, Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010
[7] W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, University Press, Cambridge, United Kingdom, 2000 | MR | Zbl
[8] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR
[9] D. P. Bertsecas, Convex Optimization Theory, Athena Scientific, Massachusetts Institute of Technology, Massachusetts, USA, 2009 | MR
[10] E. M. Vikhtenko, G. Vu, R. V. Namm, “O skhodimosti metoda Udzavy s modifitsirovannym funktsionalom Lagranzha v variatsionnykh neravenstvakh mekhaniki”, Zh. vychisl. matem. i matem. fiz., 50:8 (2010), 1357–1366 | MR | Zbl
[11] E. M. Vikhtenko, R. V. Namm, “Kharakteristicheskie svoistva modifitsirovannogo funktsionala Lagranzha dlya kontaktnoi zadachi teorii uprugosti s zadannym treniem”, Dalnevost. matem. zhurn., 9:1–2 (2009), 38–47 | MR
[12] A. Kufner, S. Fuchik, Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR
[13] N. N. Kushniruk, R. V. Namm, “Metod mnozhitelei Lagranzha dlya resheniya polukoertsitivnoi modelnoi zadachi s treniem”, Sibirskii zh. vychisl. matem., 12:4 (2009), 409–420 | Zbl
[14] L. V. Kantorovich, G. L. Akilov, Funktsionalnyi analiz, Nauka, M, 1984 | MR | Zbl
[15] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M, 1983 | MR
[16] R. V. Namm, A. G. Podgaev, “O $W_2^2$-regulyarnosti reshenii polukoertsitivnykh variatsionnykh neravenstv”, Dalnevostochnyi matem. zhurn., 3:2 (2002), 210–215