The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 6-17

Voir la notice de l'article provenant de la source Math-Net.Ru

The duality scheme based on a modified Lagrangian functional is considered for an elliptic semi-coercive variational Signorini's inequality. The sustainable method for the solution of an investigated inequality is constructed and justified.
@article{DVMG_2014_14_1_a0,
     author = {E. M. Vikhtenko and G. S. Woo and R. V. Namm},
     title = {The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified {Lagrangian} functionals},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {6--17},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a0/}
}
TY  - JOUR
AU  - E. M. Vikhtenko
AU  - G. S. Woo
AU  - R. V. Namm
TI  - The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2014
SP  - 6
EP  - 17
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a0/
LA  - ru
ID  - DVMG_2014_14_1_a0
ER  - 
%0 Journal Article
%A E. M. Vikhtenko
%A G. S. Woo
%A R. V. Namm
%T The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2014
%P 6-17
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a0/
%G ru
%F DVMG_2014_14_1_a0
E. M. Vikhtenko; G. S. Woo; R. V. Namm. The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 6-17. http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a0/