The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 6-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The duality scheme based on a modified Lagrangian functional is considered for an elliptic semi-coercive variational Signorini's inequality. The sustainable method for the solution of an investigated inequality is constructed and justified.
@article{DVMG_2014_14_1_a0,
     author = {E. M. Vikhtenko and G. S. Woo and R. V. Namm},
     title = {The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified {Lagrangian} functionals},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {6--17},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a0/}
}
TY  - JOUR
AU  - E. M. Vikhtenko
AU  - G. S. Woo
AU  - R. V. Namm
TI  - The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2014
SP  - 6
EP  - 17
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a0/
LA  - ru
ID  - DVMG_2014_14_1_a0
ER  - 
%0 Journal Article
%A E. M. Vikhtenko
%A G. S. Woo
%A R. V. Namm
%T The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2014
%P 6-17
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a0/
%G ru
%F DVMG_2014_14_1_a0
E. M. Vikhtenko; G. S. Woo; R. V. Namm. The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 6-17. http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a0/

[1] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[2] R. Glovinski, Zh. L. Lions, R. Tremoler, Chislennoe issledovanie variatsionnykh neravenstv, Mir, M, 1979 | MR

[3] G. Vu, R. V. Namm, S. A. Sachkov, “Iteratsionnyi metod poiska sedlovoi tochki dlya polukoertsitivnoi zadachi Sinorini, osnovannyi na modifitsirovannom funktsionale Lagranzha”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 26–36 | MR | Zbl

[4] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR

[5] G. Dyuvo, Zh.-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[6] A. M. Khludnev, Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[7] W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, University Press, Cambridge, United Kingdom, 2000 | MR | Zbl

[8] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[9] D. P. Bertsecas, Convex Optimization Theory, Athena Scientific, Massachusetts Institute of Technology, Massachusetts, USA, 2009 | MR

[10] E. M. Vikhtenko, G. Vu, R. V. Namm, “O skhodimosti metoda Udzavy s modifitsirovannym funktsionalom Lagranzha v variatsionnykh neravenstvakh mekhaniki”, Zh. vychisl. matem. i matem. fiz., 50:8 (2010), 1357–1366 | MR | Zbl

[11] E. M. Vikhtenko, R. V. Namm, “Kharakteristicheskie svoistva modifitsirovannogo funktsionala Lagranzha dlya kontaktnoi zadachi teorii uprugosti s zadannym treniem”, Dalnevost. matem. zhurn., 9:1–2 (2009), 38–47 | MR

[12] A. Kufner, S. Fuchik, Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR

[13] N. N. Kushniruk, R. V. Namm, “Metod mnozhitelei Lagranzha dlya resheniya polukoertsitivnoi modelnoi zadachi s treniem”, Sibirskii zh. vychisl. matem., 12:4 (2009), 409–420 | Zbl

[14] L. V. Kantorovich, G. L. Akilov, Funktsionalnyi analiz, Nauka, M, 1984 | MR | Zbl

[15] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M, 1983 | MR

[16] R. V. Namm, A. G. Podgaev, “O $W_2^2$-regulyarnosti reshenii polukoertsitivnykh variatsionnykh neravenstv”, Dalnevostochnyi matem. zhurn., 3:2 (2002), 210–215