Generalized condensers and boundary distortion theorems for conformal mappings
Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 2, pp. 196-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove some boundary distortion theorems for the univalent holomorphic functions in the unit disk by the potential theory. In particular, the discrete analogs of the classical statements on the behavior of the logarithmic capacity of the boundary sets under conformal mappings are established.
@article{DVMG_2013_13_2_a3,
     author = {V. N. Dubinin and V. Yu. Kim},
     title = {Generalized condensers and boundary distortion theorems for conformal mappings},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {196--208},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2013_13_2_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
AU  - V. Yu. Kim
TI  - Generalized condensers and boundary distortion theorems for conformal mappings
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2013
SP  - 196
EP  - 208
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2013_13_2_a3/
LA  - ru
ID  - DVMG_2013_13_2_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%A V. Yu. Kim
%T Generalized condensers and boundary distortion theorems for conformal mappings
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2013
%P 196-208
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2013_13_2_a3/
%G ru
%F DVMG_2013_13_2_a3
V. N. Dubinin; V. Yu. Kim. Generalized condensers and boundary distortion theorems for conformal mappings. Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 2, pp. 196-208. http://geodesic.mathdoc.fr/item/DVMG_2013_13_2_a3/

[1] K. Löwner, “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises”, Math. Ann., 89 (1923), 103–121 | DOI | MR | Zbl

[2] H. Unkelbach, “Über die Randverzerrung bei konformer Abbildung”, Math. Zeitschr., 43 (1938), 739–742 | DOI | MR

[3] R. Osserman, “A Sharp Schwarz inequality on the boundary”, Proc. Amer. Math. Soc., 128 (2000), 3513–3517 | DOI | MR | Zbl

[4] Y. Komatu, “Über eine Verschärfung des Löwnerschen Hilfssatzes”, Proc. Imperial Acad. Japan., 18:7 (1942), 354–359 | DOI | MR | Zbl

[5] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, Berlin, 1992 | MR | Zbl

[6] C. C. Cowen, Ch. Pommerenke, “Inequalities for the angular derivative of an analytic function in the unit disk”, J. London Math. Soc., 2:26 (1982), 271–289 | DOI | MR

[7] K. Y. Li, “Inequalities for fixed points of holomorphic functions”, Bull. London Math. Soc., 22 (1990), 446–452 | DOI | MR | Zbl

[8] D. Bolotnikov, “On Cowen-Pommerenke inequalities”, Linear Multilinear Algebra, 60:2 (2012), 249–254 | DOI | MR | Zbl

[9] M. D. Contreras, S. Diaz-Madrigal, A. Vasil'ev,, “Digons and angular derivatives of analytic self-maps of the unit disk”, Complex variables and elliptic equations, 52 (2007), 685–691 | DOI | MR | Zbl

[10] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | MR | Zbl

[11] A. Vasil'ev, Moduli of families of curves for conformal and quasiconformal mappings, Lecture Notes in Math., 1788, Springer-Verlag, Berlin-New York, 2002 | DOI | MR | Zbl

[12] J. A. Jenkins, “Some theorems on boundary distortion”, Trans. Amer. Math. Soc., 81 (1956), 477–500 | DOI | MR | Zbl

[13] V. N. Dubinin, N. V. Eirikh, “Nekotorye primeneniya obobschennykh kondensatorov v teorii analiticheskikh funktsii”, Zapiski nauchnykh seminarov POMI, 314 (2004), 52–75 | MR | Zbl

[14] V. N. Dubinin, V. Yu. Kim, “Teoremy iskazheniya dlya regulyarnykh i ogranichennykh v kruge funktsii”, Zapiski nauchnykh seminarov POMI, 350 (2007), 26–39 | MR

[15] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009

[16] V. N. Dubinin, M. Vuorinen, “Robin functions and distortion theorems for regular mappings”, Math. Nachr., 283 (2010), 1589–1602 | DOI | MR | Zbl

[17] V. N. Dubinin, L. V. Kovalev, “Privedennyi modul kompleksnoi sfery”, Zapiski nauchnykh seminarov POMI, 254 (1998), 76–94 | MR

[18] J. M. Anderson, A. Vasil'ev, “Lower Shwarz-Pick estimates and angular derivatives”, Ann. Acad. Sci. Fenn. Math., 33 (2008), 101–110 | MR | Zbl