About $\mathscr{K}$-divisibility constant in pair of weighted $L_p$ spaces
Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 2, pp. 192-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate $ p^{\frac1p}q^{\frac1q}{\leqslant}\lambda_p$ of $\mathscr{K}$-divisibility constant has been obtained for a pair of weighted $L_p$ spaces. In view of the known estimate for $\mathscr{K}$-divisibility constant for an arbitrary pair of Banach lattices this implies that ${2\leqslant}\lambda{\leqslant}4$.
@article{DVMG_2013_13_2_a2,
     author = {A. A. Dmitriev},
     title = {About $\mathscr{K}$-divisibility constant in pair of weighted $L_p$ spaces},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {192--195},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2013_13_2_a2/}
}
TY  - JOUR
AU  - A. A. Dmitriev
TI  - About $\mathscr{K}$-divisibility constant in pair of weighted $L_p$ spaces
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2013
SP  - 192
EP  - 195
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2013_13_2_a2/
LA  - ru
ID  - DVMG_2013_13_2_a2
ER  - 
%0 Journal Article
%A A. A. Dmitriev
%T About $\mathscr{K}$-divisibility constant in pair of weighted $L_p$ spaces
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2013
%P 192-195
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2013_13_2_a2/
%G ru
%F DVMG_2013_13_2_a2
A. A. Dmitriev. About $\mathscr{K}$-divisibility constant in pair of weighted $L_p$ spaces. Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 2, pp. 192-195. http://geodesic.mathdoc.fr/item/DVMG_2013_13_2_a2/

[1] N. Ya. Kruglyak, “O konstante K-delimosti pary $(C,C^1)$”, Issled. po teorii funktsii mnogikh veschestvennykh peremennykh, YaGU, Yaroslavl, 1981, 37–44 | MR

[2] T. S. Podogova, “Ob odnom svoistve modulya nepreryvnosti”, Issled. po teorii funktsii mnogikh veschestvennykh peremennykh, YaGU, Yaroslavl, 1982, 84–89

[3] Yu. A. Brudnyi, N. Ya. Krugluak, Interpolation functors and interpolation spaces, North-Holland Math. Lab., 47, Elsevier Science Publ. B.V., Amsterdam, 1991 | MR

[4] I. Berg, I. Lefstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[5] V. I. Ovchinnikov, “The method of orbit in interpolation theory”, Math. Rept., 1, Part 2, Harwood Acad. Publ, London, 1984, 349–515 | MR

[6] V. I. Dmitriev, V. I. Ovchinnikov, “Ob interpolyatsii v prostranstvakh veschestvennogo metoda”, DAN SSSR, 46:4 (1979), 794–797 | MR

[7] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR

[8] Yu. Lyuk, Spetsialnye maiematicheskie funktsii i ikh aproksimaktsii, Mir, M., 1980, 610 pp.