Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2013_13_1_a7, author = {Ya. T. Megraliev}, title = {Inverse boundary problem for the thin plates bending equation with the additional integral condition}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {83--101}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a7/} }
TY - JOUR AU - Ya. T. Megraliev TI - Inverse boundary problem for the thin plates bending equation with the additional integral condition JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2013 SP - 83 EP - 101 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a7/ LA - ru ID - DVMG_2013_13_1_a7 ER -
%0 Journal Article %A Ya. T. Megraliev %T Inverse boundary problem for the thin plates bending equation with the additional integral condition %J Dalʹnevostočnyj matematičeskij žurnal %D 2013 %P 83-101 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a7/ %G ru %F DVMG_2013_13_1_a7
Ya. T. Megraliev. Inverse boundary problem for the thin plates bending equation with the additional integral condition. Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 83-101. http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a7/
[1] A. I. Tikhonov, “Ob ustoichivosti obratnykh zadach”, Dokl. AN SSSR, 39:5 (1943), 195–198
[2] M. M. Lavrentev, “Ob odnoi obratnoi zadache dlya volnovogo uravneniya”, Dokl. AN SSSR, 157:3 (1964), 520–521 | Zbl
[3] M. M. Lavrentev, V. G. Romanov, S. T. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M, 1988
[4] V. K. Ivanov, V. V. Vasin, V. P. Tanina, Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M, 1978
[5] A. M. Denisov, Vvedenie v teoriyu obratnykh zadach, MGU, M, 1994
[6] V. V. Solovev, “Obratnye zadachi opredeleniya istochnika dlya uravneniya Puassona na ploskosti”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 44:5 (2004), 862–871 | MR | Zbl
[7] V. V. Solovev, “Obratnye zadachi dlya ellipticheskikh uravnenii na ploskosti”, Differentsialnye uravneniya, 42:8 (2006), 1106–1114 | MR | Zbl
[8] Ya. T. Megraliev, “Obratnaya kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka s dopolnitelnymi integralnym usloviem”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Kompyuternye nauki, 23 (20012), 32–40
[9] Ya. T. Megraliev, “O razreshimosti odnoi obratnoi kraevoi zadache dlya ellipticheskogo uravneniya vtorogo poryadka”, Vestnik Tverskogo Gosudarstvennogo Universiteta. Seriya: Prikladnaya matematika, 23 (2011), 25–38 | Zbl
[10] Yu. N. Rabotonov, Mekhanika deformiruemogo tverdogo tela, Nauka, M, 1988
[11] Yu. A. Amenzade, Teoriya uprugosti, Vysshaya shkola, M, 1971
[12] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M, 1969
[13] K. I. Khudaverdiev, A. A. Veliev, Issledovanie odnomernoi smeshannoi zadachi dlya odnogo klassa psevdogiperbolicheskikh uravnenii tretego poryadka s nelineinoi operatornoi pravoi chastyu, Chashyogly, Baku, 2010