Inverse boundary problem for the thin plates bending equation with the additional integral condition
Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 83-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper an inverse boundary value problem for the thin plates bending equation with the additional integral condition of the first kind is investigated. First, the initial problem is reduced to the equivalent problem, for which the theorem of existence and uniqueness of solutions is proved. Then, using these facts, the existence and uniqueness of the classical solution of initial problem is proved.
@article{DVMG_2013_13_1_a7,
     author = {Ya. T. Megraliev},
     title = {Inverse boundary problem for the thin plates bending equation with the additional integral condition},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {83--101},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a7/}
}
TY  - JOUR
AU  - Ya. T. Megraliev
TI  - Inverse boundary problem for the thin plates bending equation with the additional integral condition
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2013
SP  - 83
EP  - 101
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a7/
LA  - ru
ID  - DVMG_2013_13_1_a7
ER  - 
%0 Journal Article
%A Ya. T. Megraliev
%T Inverse boundary problem for the thin plates bending equation with the additional integral condition
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2013
%P 83-101
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a7/
%G ru
%F DVMG_2013_13_1_a7
Ya. T. Megraliev. Inverse boundary problem for the thin plates bending equation with the additional integral condition. Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 83-101. http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a7/

[1] A. I. Tikhonov, “Ob ustoichivosti obratnykh zadach”, Dokl. AN SSSR, 39:5 (1943), 195–198

[2] M. M. Lavrentev, “Ob odnoi obratnoi zadache dlya volnovogo uravneniya”, Dokl. AN SSSR, 157:3 (1964), 520–521 | Zbl

[3] M. M. Lavrentev, V. G. Romanov, S. T. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M, 1988

[4] V. K. Ivanov, V. V. Vasin, V. P. Tanina, Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M, 1978

[5] A. M. Denisov, Vvedenie v teoriyu obratnykh zadach, MGU, M, 1994

[6] V. V. Solovev, “Obratnye zadachi opredeleniya istochnika dlya uravneniya Puassona na ploskosti”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 44:5 (2004), 862–871 | MR | Zbl

[7] V. V. Solovev, “Obratnye zadachi dlya ellipticheskikh uravnenii na ploskosti”, Differentsialnye uravneniya, 42:8 (2006), 1106–1114 | MR | Zbl

[8] Ya. T. Megraliev, “Obratnaya kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka s dopolnitelnymi integralnym usloviem”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Kompyuternye nauki, 23 (20012), 32–40

[9] Ya. T. Megraliev, “O razreshimosti odnoi obratnoi kraevoi zadache dlya ellipticheskogo uravneniya vtorogo poryadka”, Vestnik Tverskogo Gosudarstvennogo Universiteta. Seriya: Prikladnaya matematika, 23 (2011), 25–38 | Zbl

[10] Yu. N. Rabotonov, Mekhanika deformiruemogo tverdogo tela, Nauka, M, 1988

[11] Yu. A. Amenzade, Teoriya uprugosti, Vysshaya shkola, M, 1971

[12] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M, 1969

[13] K. I. Khudaverdiev, A. A. Veliev, Issledovanie odnomernoi smeshannoi zadachi dlya odnogo klassa psevdogiperbolicheskikh uravnenii tretego poryadka s nelineinoi operatornoi pravoi chastyu, Chashyogly, Baku, 2010