The features of propagation of the acceleration waves in preliminary strained nonlinear elastic solids
Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 72-82
Cet article a éte moissonné depuis la source Math-Net.Ru
The features of propagation of the acceleration waves in a solid that is anisotropic in its actual state, while being isotropic in the natural one, are studied. An algorithm for constructing the acoustic tensor given an initial strain and for elastic potential set in its natural state is derived. Under the most general assumptions on the initial strain, the acoustic tensor is constructed for the following two hyperelastic solids: the Neo – Hookean one and that with modified Mooney – Rivlin potential. It is shown that the regularities of the acceleration waves propagation in the solids differ significantly from conventional properties based on the classical linear theory of elasticity.
@article{DVMG_2013_13_1_a6,
author = {T. B. Lavrova},
title = {The features of propagation of the acceleration waves in preliminary strained nonlinear elastic solids},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {72--82},
year = {2013},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a6/}
}
TY - JOUR AU - T. B. Lavrova TI - The features of propagation of the acceleration waves in preliminary strained nonlinear elastic solids JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2013 SP - 72 EP - 82 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a6/ LA - ru ID - DVMG_2013_13_1_a6 ER -
T. B. Lavrova. The features of propagation of the acceleration waves in preliminary strained nonlinear elastic solids. Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 72-82. http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a6/
[1] H. B. Lynn, “A geographysicist`s view on seismic anisotropy”, Seismic anisotropy, Proc. Sixth Int. workshop on seismic anisotropy, Soc. of Exploration Geophysicists (Oklahoma), 1994, 1–11
[2] E. I. Ryzhak, Beskoordinatnoe tenzornoe ischislenie dlya mekhaniki sploshnykh sred, MFTI, M., 2011
[3] K. Trusdell, Pervonachalnyi kurs mekhaniki sploshnykh sred, Mir, M., 1975
[4] F. Syarle, Matematicheskaya teoriya uprugosti, Mir, M., 1992