The uniqueness of quasistatic problems of creep forming
Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

General statements of direct and inverse problems of creep forming in the form of quasistatic deformation taking into account both infinitesimal deformations and geometrical nonlinearity are given. Such statements allow the author to prove the uniqueness of creep forming problems using the sufficient conditions for uniqueness of the boundary-value problems.
@article{DVMG_2013_13_1_a0,
     author = {K. S. Bormotin},
     title = {The uniqueness of quasistatic problems of creep forming},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a0/}
}
TY  - JOUR
AU  - K. S. Bormotin
TI  - The uniqueness of quasistatic problems of creep forming
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2013
SP  - 3
EP  - 14
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a0/
LA  - ru
ID  - DVMG_2013_13_1_a0
ER  - 
%0 Journal Article
%A K. S. Bormotin
%T The uniqueness of quasistatic problems of creep forming
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2013
%P 3-14
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a0/
%G ru
%F DVMG_2013_13_1_a0
K. S. Bormotin. The uniqueness of quasistatic problems of creep forming. Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a0/