On certain Littlewood-like and Schmidt-like problems in inhomogeneous Diophantine approximations
Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 237-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give several results related to inhomogeneous approximations to two real numbers and badly approximable numbers. Our results are related to classical theorems by A. Khintchine [7] and to an original method invented by Y. Peres and W. Schlag [13].
@article{DVMG_2012_12_2_a9,
     author = {N. G. Moshchevitin},
     title = {On certain {Littlewood-like} and {Schmidt-like} problems in inhomogeneous {Diophantine} approximations},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {237--254},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a9/}
}
TY  - JOUR
AU  - N. G. Moshchevitin
TI  - On certain Littlewood-like and Schmidt-like problems in inhomogeneous Diophantine approximations
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2012
SP  - 237
EP  - 254
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a9/
LA  - en
ID  - DVMG_2012_12_2_a9
ER  - 
%0 Journal Article
%A N. G. Moshchevitin
%T On certain Littlewood-like and Schmidt-like problems in inhomogeneous Diophantine approximations
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2012
%P 237-254
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a9/
%G en
%F DVMG_2012_12_2_a9
N. G. Moshchevitin. On certain Littlewood-like and Schmidt-like problems in inhomogeneous Diophantine approximations. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 237-254. http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a9/

[1] D. Badziahin, A. Pollington, S. Velani, “On a problem in simultaneous Diophantine approximation: Schmidt's conjecture”, Annals of Mathematics, 174 (2011), 1837–1883 | DOI | MR | Zbl

[2] D. Badziahin, On multiplicatively badly approximable numbers, 2011, arXiv: 1101.1855 | MR

[3] Y. Bugeaud, “Multiplicative Diophantine approximation”, Dynamical systems and Diophantine Approximation, Société mathématique de France, Séminaires et Congrès 19, 2009, 107–127 | MR

[4] Y. Bugeaud, N. Moshchevitin, “Badly approximable numbers and Littlewood-type problems”, Mathematical Proceedings of the Cambridge Philosophical Society, 150:02 (2011), 215–226 | DOI | MR | Zbl

[5] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts Math. Math. Phys., v. 45, Cambridge Univ. Press, New York, 1957 | MR | Zbl

[6] H. J. Godwin, “On the theorem of Khintchine”, Proc. London Math. Soc, 3, 1:1 (1953), 211–221 | DOI | MR | Zbl

[7] A. Khintchine, “Über eine Klasse linearer diophantischer Approximationen”, Rendiconti Circ. Math. Palermo, 50:2 (1926), 170–195 | DOI | Zbl

[8] E. Lindenstrauss, U. Shapira, Homogeneous orbit closures and applications, 2011, arXiv: 1101.3945 | MR

[9] N. Moshchevitin, “Khintchine's Diophantine singular systems and their applications”, Russian Math. Surveys, 65:3 (2010), 433–511 | DOI | MR | Zbl

[10] N. Moshchevitin, “On simultaneously badly approximable numbers”, Bull. London Math. Soc., 42:1 (2010), 149–154 | DOI | MR | Zbl

[11] N. Moshchevitin, “A note on badly approximable affine forms and winning sets”, Moscow Mathematical Journal, 11:1 (2011), 129–137 | MR | Zbl

[12] N. G. Moshchevitin, Schmidt's conjecture and Badziahin – Pollington – Velani's theorem, 2010, arXiv: 1004.4269

[13] Y. Peres, W. Schlag, “Two Erdös problems on lacunary sequences: chromatic numbers and Diophantine approximations”, Bull. London Math. Soc., 42:2 (2010), 295–300 | DOI | MR | Zbl

[14] A. M. Rockett, P. Szüsz, Continued Fractions, World Scientific Publishing Co., 1992 | MR | Zbl

[15] W. M. Schmidt, Diophantine Approximations, Lect. Not. Math, v. 785, 1980

[16] W. M. Schmidt, “Open problems in Diophantine approximations”, Approximations Diophantiennes et nombres transcendants' Luminy, 1982, Progress in Mathematics, Birkhäuser, 1983, 271–289 | MR

[17] U. Shapira, “A solution to a problem of Cassels and Diophantine properties of cubic numbers”, Annals of Mathematics, 173:1 (2011), 543–557 | DOI | MR | Zbl

[18] U. Shapira, Grids with dense values, 2011, arXiv: 1101.3941 | MR

[19] J. Tseng, “Badly approhimable affine forms and Schmidt games”, J. Number Theory, 129:12 (2009), 3020–3025 | DOI | MR | Zbl