Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2012_12_2_a8, author = {S. I. Kalmykov}, title = {Inequalities for {Modulus} of {Rational} {Functions}}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {231--236}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a8/} }
S. I. Kalmykov. Inequalities for Modulus of Rational Functions. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 231-236. http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a8/
[1] N. C. Ankeny, T. J. Rivlin, “On a theorem of S. Bernstein”, Pacific J. Math., 5:suppl. 2 (1955), 849–852 | DOI | MR | Zbl
[2] A. A. Gonchar, “Otsenki rosta ratsionalnykh funktsii i nekotorye ikh prilozheniya”, Matem. sb., 72(114):3 (1967), 489–503 | MR | Zbl
[3] N. K. Govil, R. N. Mohapatra, “Inequalities for Maximum Modulus of Ratioanl Functions with Prescribed Poles”, Approximation Theory: In Memory of A. K. Varma, Marcel Dekker, Inc., New York, 1998, 255–263 | MR | Zbl
[4] M. A. Qazi, “On the maximum modulus of polynomials”, Proc. Amer. Math. Soc., 115:2 (1992), 337–349 | DOI | MR | Zbl
[5] W. M. Shah, A. Liman, “Integral estimates for the family of B-operators”, Operators and matrices, 5:1 (2011), 79–87 | DOI | MR | Zbl
[6] Q. I. Rahman, G. Schmeisser, Analytic theory of polynomials, Oxford University Press, Oxford, 2002 | MR | Zbl
[7] V. N. Dubinin, “O primenenii lemmy Shvartsa k neravenstvam dlya tselykh funktsii s ogranicheniyami na nuli”, Zap. nauchn. sem. POMI, 337 (2006), 101–112 | MR | Zbl
[8] A. A. Gonchar, “O zadachakh E. I. Zolotareva, svyazannykh s ratsionalnymi funktsiyami”, Matem. sb., 78(120):4 (1969), 640–654 | Zbl
[9] S. I. Kalmykov, “Ob otsenke modulya ratsionalnoi funktsii”, Zap. nauchn. sem. POMI, 371 (2009), 109–116 | MR
[10] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M, 1966 | MR
[11] N. K. Govil, Q. I. Rahman, G. Schmeisser, “On the derivative of a polynomial”, Illinois Journal of Mathematics, 23 (1979), 319–329 | MR | Zbl