Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2012_12_2_a5, author = {V. N. Dubinin}, title = {On a {Class} of {Univalent} {Functions}}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {184--194}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a5/} }
V. N. Dubinin. On a Class of Univalent Functions. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 184-194. http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a5/
[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[2] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR
[3] M. Shiffer, “Nekotorye novye rezultaty v teorii konformnykh otobrazhenii”, Prilozhenie k knige R. Kuranta, Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, IL, M., 1953
[4] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009
[5] W. K. Hayman, Multivalent functions, Cambridge Univ. Press. Second ed., Cambridge, 1994 | MR | Zbl
[6] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl