On a Class of Univalent Functions
Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 184-194
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we study the meromorphic univalent functions in the complex plane with radial slits. Covering and multipoint distortion theorems for such functions are proved. Some applications for rational functions are also given.
@article{DVMG_2012_12_2_a5,
author = {V. N. Dubinin},
title = {On a {Class} of {Univalent} {Functions}},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {184--194},
year = {2012},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a5/}
}
V. N. Dubinin. On a Class of Univalent Functions. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 184-194. http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a5/
[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[2] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR
[3] M. Shiffer, “Nekotorye novye rezultaty v teorii konformnykh otobrazhenii”, Prilozhenie k knige R. Kuranta, Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, IL, M., 1953
[4] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009
[5] W. K. Hayman, Multivalent functions, Cambridge Univ. Press. Second ed., Cambridge, 1994 | MR | Zbl
[6] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl