Asymptotic Formulae for Dynamic Characteristics of a Particle in the Vicinity of Resonance
Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 171-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic formulae for the action-angle variables are constructed for low and high-energy particles in the vicinity of a nonlinear resonance. Estimation of the approximation accuracy with respect to the energy parameter and some characteristics of the model Hamiltonian are obtained.
@article{DVMG_2012_12_2_a4,
     author = {M. A. Guzev},
     title = {Asymptotic {Formulae} for {Dynamic} {Characteristics} of a {Particle} in the {Vicinity} of {Resonance}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {171--183},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a4/}
}
TY  - JOUR
AU  - M. A. Guzev
TI  - Asymptotic Formulae for Dynamic Characteristics of a Particle in the Vicinity of Resonance
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2012
SP  - 171
EP  - 183
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a4/
LA  - ru
ID  - DVMG_2012_12_2_a4
ER  - 
%0 Journal Article
%A M. A. Guzev
%T Asymptotic Formulae for Dynamic Characteristics of a Particle in the Vicinity of Resonance
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2012
%P 171-183
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a4/
%G ru
%F DVMG_2012_12_2_a4
M. A. Guzev. Asymptotic Formulae for Dynamic Characteristics of a Particle in the Vicinity of Resonance. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 171-183. http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a4/

[1] G. M. Zaslavskii, R. Z. Sagdeev, Vvedenie v nelineinuyu fiziku: Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988, 368 pp. | MR

[2] M. A. Guzev, “Asimptoticheskoe povedenie peremennykh «deistvie-ugol» dlya odnomernoi molekulyarnoi dinamiki”, Toricheskaya topologiya i avtomorfnye funktsii: tezisy dokladov Mezhdunarodnoi konferentsii (Khabarovsk, 5–10 sentyabrya 2011 g.), eds. V. M. Bukhshtaber, V. A. Bykovskii, Izd-vo Tikhookean. gos. un-ta, Khabarovsk, 2011, 140–141

[3] B. V. Chirikov, “A universal instability of many-dimensional oscillator systems”, Phys. Rep., 52:5 (1979), 264–379 | DOI | MR

[4] M. A. Guzev, K. V. Koshel, Yu. G. Izrailskii, “Effekt globalnoi khaotizatsii v tsepochke chastits”, Nelineinaya Dinamika, 6:2 (2010), 291–305