Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2012_12_2_a3, author = {A. S. Velichko}, title = {On the {Step} {Choice} in {Projection} {Algorithms} for {Large-Scale} {Linear} {Programming} {Problems}}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {160--170}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a3/} }
TY - JOUR AU - A. S. Velichko TI - On the Step Choice in Projection Algorithms for Large-Scale Linear Programming Problems JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2012 SP - 160 EP - 170 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a3/ LA - ru ID - DVMG_2012_12_2_a3 ER -
A. S. Velichko. On the Step Choice in Projection Algorithms for Large-Scale Linear Programming Problems. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 160-170. http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a3/
[1] I. I. Eremin, “O nekotorykh iteratsionnykh metodakh v vypuklom programmirovanii”, Ekonomika i matematicheskie metody, 2:6 (1966), 870–886 | MR
[2] I. I. Eremin, V. L. Mazurov, Nestatsionarnye protsessy matematicheskogo programmirovaniya, Nauka, M., 1979 | MR
[3] I. I. Eremin, “Metody feierovskikh priblizhenii v vypuklom programmirovanii”, Matematicheskie zametki, 3:2 (1968), 217–234 | MR
[4] L. M. Bregman, “Relaksatsionnyi metod nakhozhdeniya obschei tochki vypuklykh mnozhestv i ego primenenie dlya zadach vypuklogo programmirovaniya”, Zhurn. vychisl. matem. i matem. fiziki, 7:3 (1967), 620–631 | MR | Zbl
[5] L. G. Gurin, B. T. Polyak, E. V. Raik, “Metody proektsii dlya otyskaniya obschei tochki vypuklykh mnozhestv”, Zhurn. vychisl. matem. i matem. fiziki, 7:6 (1967), 1211–1228 | MR | Zbl
[6] E. G. Golshtein, E. G. Tretyakov, Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989 | MR
[7] H. H. Bauschke, J. M. Borwein, “On projection algorithms for solving convex feasibility problems”, SIAM Review, 38:3 (1996), 367–426 | DOI | MR | Zbl
[8] Y. Censor, W. Chen, P. L. Combettes, R. Davidi, G. T. Herman, “On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints”, Computational Optimization and Applications, 2012, no. 3, 1065–1088 | DOI | MR | Zbl
[9] E. A. Berdnikova, I. I. Eremin, L. D. Popov, “Raspredelennye feierovskie protsessy dlya sistem lineinykh neravenstv i zadach lineinogo programmirovaniya”, Avtomatika i telemekhanika, 2004, no. 2, 16–32 | MR | Zbl
[10] I. I. Eremin, L. D. Popov, “Feierovskie protsessy v teorii i praktike: obzor poslednikh rezultatov”, Izvestiya VUZov. Matematika, 2009, no. 1, 44–65 | MR | Zbl
[11] E. A. Nurminskii, “Ispolzovanie dopolnitelnykh malykh vozdeistvii v feierovskikh modelyakh iterativnykh algoritmov”, Zhurn. vychisl. matem. i matem. fiziki, 48:12 (2008), 2121–2128 | MR
[12] E. A. Nurminskii, “Feierovskie protsessy c malymi vozmuscheniyami”, Doklady AN, 422:5 (2008), 601–605 | MR
[13] C. Michelot, “A finite algorithm for finding the projection of a point onto the canonical simplex of $R^n$”, Journal of Optimization Theory and Applications, 50:1 (1986), 195–200 | DOI | MR | Zbl
[14] E. A. Nurminskii, “Proektsiya na vneshne zadannye poliedry”, Zhurn. vychisl. matem. i matem. fiziki, 48:3 (2008), 387–396 | MR | Zbl
[15] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR
[16] Yu. E. Nesterov, Vvedenie v vypukluyu optimizatsiyu, MTsNMO, M., 2010
[17] I. I. Eremin, “Obobschenie relaksatsionnogo metoda Motskina – Agmona”, Uspekhi matem. nauk, 20:2 (1965), 183–187 | MR | Zbl
[18] B. T. Polyak, “Minimizatsiya negladkikh funktsionalov”, Zhurn. vychisl. matem. i matem. fiziki, 9:3 (1969), 509–521
[19] N. Z. Shor, “O skorosti skhodimosti metoda obobschennogo gradientnogo spuska s rastyazheniem prostranstva”, Kibernetika, 1970, no. 2, 80–85 | Zbl
[20] A. S. Velichko, “Reshenie zadach optimizatsii metodom posledovatelnykh proektsii s razlichnymi sposobami vybora nachalnogo priblizheniya i shagovykh mnozhitelei”, sv. o gos. reg. prog. dlya EVM Ross. Fed. 2011614018 ot 24.05.11; zayavl. 06.04.11; opubl. 20.09.2011., RU OBPBT, 3, 319 pp.
[21] E. D. Dolan, J. J. More, “Benchmarking optimization software with perfomance profiles”, Mathematical programming, 91:2 (2002), 201–213 | DOI | MR | Zbl