On the Step Choice in Projection Algorithms for Large-Scale Linear Programming Problems
Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 160-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to solve large-scale linear programming problems the group of algorithms with projection of a point onto the set is considered. Special method for selecting the initial approximation and the step-size parameters is given to reduce computational time. Comparative analysis of the rates of convergence and running time of the algorithm with various step parameters is done for the special large-scale test problem with randomly generated data.
@article{DVMG_2012_12_2_a3,
     author = {A. S. Velichko},
     title = {On the {Step} {Choice} in {Projection} {Algorithms} for {Large-Scale} {Linear} {Programming} {Problems}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {160--170},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a3/}
}
TY  - JOUR
AU  - A. S. Velichko
TI  - On the Step Choice in Projection Algorithms for Large-Scale Linear Programming Problems
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2012
SP  - 160
EP  - 170
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a3/
LA  - ru
ID  - DVMG_2012_12_2_a3
ER  - 
%0 Journal Article
%A A. S. Velichko
%T On the Step Choice in Projection Algorithms for Large-Scale Linear Programming Problems
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2012
%P 160-170
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a3/
%G ru
%F DVMG_2012_12_2_a3
A. S. Velichko. On the Step Choice in Projection Algorithms for Large-Scale Linear Programming Problems. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 160-170. http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a3/

[1] I. I. Eremin, “O nekotorykh iteratsionnykh metodakh v vypuklom programmirovanii”, Ekonomika i matematicheskie metody, 2:6 (1966), 870–886 | MR

[2] I. I. Eremin, V. L. Mazurov, Nestatsionarnye protsessy matematicheskogo programmirovaniya, Nauka, M., 1979 | MR

[3] I. I. Eremin, “Metody feierovskikh priblizhenii v vypuklom programmirovanii”, Matematicheskie zametki, 3:2 (1968), 217–234 | MR

[4] L. M. Bregman, “Relaksatsionnyi metod nakhozhdeniya obschei tochki vypuklykh mnozhestv i ego primenenie dlya zadach vypuklogo programmirovaniya”, Zhurn. vychisl. matem. i matem. fiziki, 7:3 (1967), 620–631 | MR | Zbl

[5] L. G. Gurin, B. T. Polyak, E. V. Raik, “Metody proektsii dlya otyskaniya obschei tochki vypuklykh mnozhestv”, Zhurn. vychisl. matem. i matem. fiziki, 7:6 (1967), 1211–1228 | MR | Zbl

[6] E. G. Golshtein, E. G. Tretyakov, Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989 | MR

[7] H. H. Bauschke, J. M. Borwein, “On projection algorithms for solving convex feasibility problems”, SIAM Review, 38:3 (1996), 367–426 | DOI | MR | Zbl

[8] Y. Censor, W. Chen, P. L. Combettes, R. Davidi, G. T. Herman, “On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints”, Computational Optimization and Applications, 2012, no. 3, 1065–1088 | DOI | MR | Zbl

[9] E. A. Berdnikova, I. I. Eremin, L. D. Popov, “Raspredelennye feierovskie protsessy dlya sistem lineinykh neravenstv i zadach lineinogo programmirovaniya”, Avtomatika i telemekhanika, 2004, no. 2, 16–32 | MR | Zbl

[10] I. I. Eremin, L. D. Popov, “Feierovskie protsessy v teorii i praktike: obzor poslednikh rezultatov”, Izvestiya VUZov. Matematika, 2009, no. 1, 44–65 | MR | Zbl

[11] E. A. Nurminskii, “Ispolzovanie dopolnitelnykh malykh vozdeistvii v feierovskikh modelyakh iterativnykh algoritmov”, Zhurn. vychisl. matem. i matem. fiziki, 48:12 (2008), 2121–2128 | MR

[12] E. A. Nurminskii, “Feierovskie protsessy c malymi vozmuscheniyami”, Doklady AN, 422:5 (2008), 601–605 | MR

[13] C. Michelot, “A finite algorithm for finding the projection of a point onto the canonical simplex of $R^n$”, Journal of Optimization Theory and Applications, 50:1 (1986), 195–200 | DOI | MR | Zbl

[14] E. A. Nurminskii, “Proektsiya na vneshne zadannye poliedry”, Zhurn. vychisl. matem. i matem. fiziki, 48:3 (2008), 387–396 | MR | Zbl

[15] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[16] Yu. E. Nesterov, Vvedenie v vypukluyu optimizatsiyu, MTsNMO, M., 2010

[17] I. I. Eremin, “Obobschenie relaksatsionnogo metoda Motskina – Agmona”, Uspekhi matem. nauk, 20:2 (1965), 183–187 | MR | Zbl

[18] B. T. Polyak, “Minimizatsiya negladkikh funktsionalov”, Zhurn. vychisl. matem. i matem. fiziki, 9:3 (1969), 509–521

[19] N. Z. Shor, “O skorosti skhodimosti metoda obobschennogo gradientnogo spuska s rastyazheniem prostranstva”, Kibernetika, 1970, no. 2, 80–85 | Zbl

[20] A. S. Velichko, “Reshenie zadach optimizatsii metodom posledovatelnykh proektsii s razlichnymi sposobami vybora nachalnogo priblizheniya i shagovykh mnozhitelei”, sv. o gos. reg. prog. dlya EVM Ross. Fed. 2011614018 ot 24.05.11; zayavl. 06.04.11; opubl. 20.09.2011., RU OBPBT, 3, 319 pp.

[21] E. D. Dolan, J. J. More, “Benchmarking optimization software with perfomance profiles”, Mathematical programming, 91:2 (2002), 201–213 | DOI | MR | Zbl