To the Formation of Residual Stress Field in the Vicinity of a Spherical Cavity Viscoelastoplastic Material
Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 146-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact solution of a sequence of one-dimensional boundary value problems on the formation of a neighborhood of single spherical defect continuity viscoelastoplastic hydrostatic pressure, followed by unloading and heating are resulted. The level and distribution of residual stresses and the relaxation of the latter when heated are calculated. It is accepted, that properties of a material submit to linear viscoelastic Voigt model at a stage anticipating plastic flow, and at unloading, and the yield stress depends on temperature.
@article{DVMG_2012_12_2_a2,
     author = {A. A. Burenin and L. V. Kovtanjuk and I. A. Terletskiy},
     title = {To the {Formation} of {Residual} {Stress} {Field} in the {Vicinity} of a {Spherical} {Cavity} {Viscoelastoplastic} {Material}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {146--159},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a2/}
}
TY  - JOUR
AU  - A. A. Burenin
AU  - L. V. Kovtanjuk
AU  - I. A. Terletskiy
TI  - To the Formation of Residual Stress Field in the Vicinity of a Spherical Cavity Viscoelastoplastic Material
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2012
SP  - 146
EP  - 159
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a2/
LA  - ru
ID  - DVMG_2012_12_2_a2
ER  - 
%0 Journal Article
%A A. A. Burenin
%A L. V. Kovtanjuk
%A I. A. Terletskiy
%T To the Formation of Residual Stress Field in the Vicinity of a Spherical Cavity Viscoelastoplastic Material
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2012
%P 146-159
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a2/
%G ru
%F DVMG_2012_12_2_a2
A. A. Burenin; L. V. Kovtanjuk; I. A. Terletskiy. To the Formation of Residual Stress Field in the Vicinity of a Spherical Cavity Viscoelastoplastic Material. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 146-159. http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a2/

[1] V. I. Astafev, Yu. N. Radaev, L. V. Stepanova, Nelineinaya mekhanika razrusheniya, «Samarskii universitet», Samara, 2001, 632 pp.

[2] G. P. Anastasiadi, M. V. Silnikov, Neodnorodnost i rabotosposobnost stali, «Poligon», Sankt-Peterburg, 2002, 624 pp.

[3] V. I. Gorelov, “Issledovanie vliyanii vysokikh davlenii na mekhanicheskie kharakteristiki alyuminievykh splavov”, Prikl. mekhanika i tekhn. fizika, 1984, no. 5, 157–158

[4] A. A. Burenin, L. V. Kovtanyuk, M. V. Polonik, “Vozmozhnost povtornogo plasticheskogo techeniya pri obschei razgruzke uprugoplasticheskoi sredy”, DAN, 375:6 (2000), 767–769

[5] A. A. Burenin, L. V. Kovtanyuk, Uprugie effekty pri intensivnom neobratimom deformirovanii, Iz-vo DVGTU, Vladivostok, 2011, 280 pp.

[6] A. A. Burenin, L. V. Kovtanyuk, E. V.Murashkin, “Ob ostatochnykh napryazheniyakh v okrestnosti tsilindricheskogo defekta sploshnosti vyazkouprugoplasticheskogo materiala”, Prikl. mekhanika i tekhn. fizika, 47:2 (2006), 110–119 | Zbl

[7] A. A. Burenin, L. V. Kovtanyuk, “Ostatochnye napryazheniya u tsilindricheskoi polosti v idealnoi uprugoplasticheskoi srede”, Problemy mekhaniki neuprugikh deformatsii. Sbornik statei, posvyaschennyi 70-letiyu D. D. Ivleva, 2001, 74–94, Fizmatlit, Moskva

[8] A. A. Ilyushin, B. E. Pobedrya, Osnovy matematicheskoi teorii termouprugosti, Nauka, M., 1970, 328 pp. | MR

[9] D. D. Ivlev, “Ob opredelenii peremeschenii v uprugoplasticheskikh zadachakh teorii idealnoi plastichnosti”, V kn. Uspekhi mekhaniki deformiruemykh sred (k 100-letiyu so dnya rozhdeniya akademika B. G. Galerkina), 1975, 236–240, Moskva | Zbl

[10] A. Yu. Ishlinskii, D. D. Ivlev, Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2001, 704 pp.

[11] A. A. Burenin, L. V. Kovtanyuk, M. V. Polonik, “Formirovanie odnomernogo polya ostatochnykh napryazhenii v okrestnosti tsilindricheskogo defekta sploshnosti uprugoplasticheskoi sredy”, Prikl. matematika i mekhanika, 67:2 (2003), 316–325