Structure Modeling of the Strength Criterion of Periodic Composites Under the Complex Temperature-Force Loading
Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 262-273.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model of the strength criterion of doubly periodic unidirectional composites (CM) under the complex temperature-force loading is worked out on the base of structural approach. The investigation of the effect of temperature on the strength properties of CM is analyzed using the suggested model. The condition of averaging of microstresses on the volume of representative elements and the condition of continuity of displacements at the interfaces between them are fulfilled.
@article{DVMG_2012_12_2_a11,
     author = {S. F. Pyataev},
     title = {Structure {Modeling} of the {Strength} {Criterion} of {Periodic} {Composites} {Under} the {Complex} {Temperature-Force} {Loading}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {262--273},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a11/}
}
TY  - JOUR
AU  - S. F. Pyataev
TI  - Structure Modeling of the Strength Criterion of Periodic Composites Under the Complex Temperature-Force Loading
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2012
SP  - 262
EP  - 273
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a11/
LA  - ru
ID  - DVMG_2012_12_2_a11
ER  - 
%0 Journal Article
%A S. F. Pyataev
%T Structure Modeling of the Strength Criterion of Periodic Composites Under the Complex Temperature-Force Loading
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2012
%P 262-273
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a11/
%G ru
%F DVMG_2012_12_2_a11
S. F. Pyataev. Structure Modeling of the Strength Criterion of Periodic Composites Under the Complex Temperature-Force Loading. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 262-273. http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a11/

[1] \label{Kristensen} R. Kristensen, Vvedenie v mekhaniku kompozitov, Mir, M., 1982, 334 pp.

[2] \label{Shermergor} T. D. Shermergor, Teoriya uprugosti mikroneodnorodnykh sred, Nauka, M., 1977, 400 pp.

[3] \label{Vanin} G. A. Vanin, Mikromekhanika kompozitsionnykh materialov, Naukova dumka, Kiev, 1985, 304 pp.

[4] \label{LNemPyat} Yu. V. Nemirovskii, S. F. Pyataev, “Poverkhnost tekuchesti dvoyakoperiodicheskogo voloknistogo kompozitsionnogo materiala”, Journal of Siberian Federal University. Matematics $\$ Physics, 2:4 (2009), 470–483 | MR

[5] \label{Lb10} Yu. V. Nemirovskii, S. F. Pyataev, “Opredelenie predelnogo uprugogo soprotivleniya kompozitov pri slozhnom napryazhennom sostoyanii”, Problemy prochnosti i plastichnosti, Mezhvuz. sb., N.-NGU, Nizhnii Novgorod, 2000, 5–18 | MR

[6] \label{Lb11} Yu. V. Nemirovskii, S. F. Pyataev, “Avtomatizirovannaya triangulyatsiya mnogosvyaznykh oblastei so sguscheniem i razrezheniem uzlov”, Vychislitelnye tekhnologii, 5:2 (2000), 82–91 | MR

[7] \label{Fudzi} T. Fudzii, M. Dzako, Mekhanika razrusheniya kompozitsionnykh materialov, Mir, M., 1982, 232 pp.

[8] \label{Ebert_Rait} L. Dzh. Ebert, P. L. Rait, “Mekhanicheskie aspekty poverkhnosti razdela”, Poverkhnosti razdela v metallicheskikh kompozitakh, v. 1, ed. A. Metkalf, Mir, M., 1978, 42–76