A Kernel Smoothing Method for General Integral Equations
Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 255-261

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we reduce the general linear integral equation of the third kind in $L^2(Y,\mu)$, with largely arbitrary kernel and coefficient, to an equivalent integral equation either of the second kind or of the first kind in $L^2(\mathbb{R})$, with the kernel being the linear pencil of bounded infinitely differentiable bi-Carleman kernels expandable in absolutely and uniformly convergent bilinear series. The reduction is done by using unitary equivalence transformations.
@article{DVMG_2012_12_2_a10,
     author = {I. M. Novitskii},
     title = {A {Kernel} {Smoothing} {Method} for {General} {Integral} {Equations}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {255--261},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a10/}
}
TY  - JOUR
AU  - I. M. Novitskii
TI  - A Kernel Smoothing Method for General Integral Equations
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2012
SP  - 255
EP  - 261
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a10/
LA  - en
ID  - DVMG_2012_12_2_a10
ER  - 
%0 Journal Article
%A I. M. Novitskii
%T A Kernel Smoothing Method for General Integral Equations
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2012
%P 255-261
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a10/
%G en
%F DVMG_2012_12_2_a10
I. M. Novitskii. A Kernel Smoothing Method for General Integral Equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 255-261. http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a10/