A Kernel Smoothing Method for General Integral Equations
Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 255-261
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we reduce the general linear integral equation of the third kind
in $L^2(Y,\mu)$, with largely arbitrary kernel and coefficient, to an equivalent
integral equation either of the second kind or of the first kind in
$L^2(\mathbb{R})$, with the kernel being the linear pencil of bounded infinitely
differentiable bi-Carleman kernels expandable in absolutely and uniformly
convergent bilinear series. The reduction is done by using unitary equivalence
transformations.
@article{DVMG_2012_12_2_a10,
author = {I. M. Novitskii},
title = {A {Kernel} {Smoothing} {Method} for {General} {Integral} {Equations}},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {255--261},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a10/}
}
I. M. Novitskii. A Kernel Smoothing Method for General Integral Equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 255-261. http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a10/