Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2012_12_2_a10, author = {I. M. Novitskii}, title = {A {Kernel} {Smoothing} {Method} for {General} {Integral} {Equations}}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {255--261}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a10/} }
I. M. Novitskii. A Kernel Smoothing Method for General Integral Equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 2, pp. 255-261. http://geodesic.mathdoc.fr/item/DVMG_2012_12_2_a10/
[1] N. I. Akhiezer, “Integral operators with Carleman kernels”, Uspekhi Mat. Nauk., 2:5 (1947), 93–132 (in Russian) | MR | Zbl
[2] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, Nauka, Moscow, 1966 (in Russian) | Zbl
[3] P. Auscher, G. Weiss, M. V. Wickerhauser, “Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets”, Wavelets: a tutorial in theory and applications, ed. C. Chui, Academic Press, Boston, 1992, 237–256 | MR
[4] T. Carleman, Sur les équations intégrales singulières à noyau réel et symétrique, A.-B. Lundequistska Bokhandeln, Uppsala, 1923
[5] C. G. Costley, “On singular normal linear equations”, Can. Math. Bull., 13 (1970), 199–203 | DOI | MR | Zbl
[6] P. Halmos, V. Sunder, Bounded integral operators on $L^2$ spaces, Springer, Berlin, 1978 | MR
[7] E. Hernández, G. Weiss, A first course on wavelets, CRC Press, New York, 1996 | MR | Zbl
[8] T. T. Kadota, “Term-by-term differentiability of Mercer's expansion”, Proc. Amer. Math. Soc., 18 (1967), 69–72 | MR | Zbl
[9] V. B. Korotkov, Integral operators, Nauka, Novosibirsk, 1983 (in Russian) | MR
[10] V. B. Korotkov, “Systems of integral equations”, Sibirsk. Mat. Zh., 27:3 (1986), 121–133 (in Russian) | MR | Zbl
[11] V. B. Korotkov, “On the reduction of families of operators to integral form”, Sibirsk. Mat. Zh., 28:3 (1987), 149–151 (in Russian) | MR | Zbl
[12] V. B. Korotkov, Some questions in the theory of integral operators, Institute of Mathematics of the Siberian Branch of the Academy of Sciences of USSR, Novosibirsk, 1988 (in Russian) | Zbl
[13] J. Mercer, “Functions of positive and negative type, and their connection with the theory of integral equations”, Philos. Trans. Roy. Soc. London Ser. A, 209 (1909), 415–446 | DOI | Zbl
[14] I. M. Novitskii, “Integral representations of linear operators by smooth Carleman kernels of Mercer type”, Proc. Lond. Math. Soc. (3), 68:1 (1994), 161–177 | DOI | MR
[15] I. M. Novitskii, “Fredholm minors for completely continuous operators”, Dal'nevost. Mat. Sb., 7 (1999), 103–122 (in Russian)
[16] I. M. Novitskii, “Fredholm formulae for kernels which are linear with respect to parameter”, Dal'nevost. Mat. Zh., 3:2 (2002), 173–194 (in Russian) | MR
[17] I. M. Novitskii, “Integral representations of unbounded operators by infinitely smooth kernels”, Cent. Eur. J. Math., 3:4 (2005), 654–665 | DOI | MR | Zbl
[18] I. M. Novitskii, “Integral representations of unbounded operators by infinitely smooth bi-Carleman kernels”, Int. J. Pure Appl. Math., 54:3 (2009), 359–374 | MR | Zbl
[19] I. M. Novitskii, “On the convergence of polynomial Fredholm series”, Dal'nevost. Mat. Zh., 9:1-2 (2009), 131–139 | MR
[20] I. M. Novitskii, “Unitary equivalence to integral operators and an application”, Int. J. Pure Appl. Math., 50:2 (2009), 295–300 | MR | Zbl
[21] I. M. Novitskii, “Integral operators with infinitely smooth bi-Carleman kernels of Mercer type”, Int. Electron. J. Pure Appl. Math., 2:1 (2010), 43–73 | MR
[22] I. M. Novitskii, “Kernels of integral equations can be boundedly infinitely differentiable on $\mathbb{R}^2$”, Proc. 2011 World Congress on Engineering and Technology (CET 2011, Shanghai, China, Oct. 28–Nov. 2, 2011), v. 2, {IEEE} Press, Beijing, 2011, 789–792
[23] W. J. Trjitzinsky, “Singular integral equations with complex valued kernels”, Ann. Mat. Pura Appl., 4:25 (1946), 197–254 | DOI | MR
[24] J. von Neumann, Charakterisierung des Spektrums eines Integraloperators, Actual. scient. et industr., 229, Hermann, Paris, 1935
[25] J. W. Williams, “Linear integral equations with singular normal kernels of class I”, J. Math. Anal. Appl., 68:2 (1979), 567–579 | DOI | MR | Zbl