Relations between conjectural eigenvalues of Hecke operators on submotives of Siegel varieties
Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 1, pp. 60-85
Voir la notice de l'article provenant de la source Math-Net.Ru
There exist conjectural formulas of relations between $L$-functions of submotives of Shimura varieties and
automorphic representations of the corresponding reductive groups, due to Langlands – Arthur. In the present paper
these formulas are used in order to get explicit relations between eigenvalues of $p$-Hecke operators (generators of
the $p$-Hecke algebra of $X$) on cohomology spaces of some of these submotives, for the case where $X$ is a Siegel variety.
Hence, this result is conjectural as well: the methods related to counting points on reductions of $X$ using the Selberg
trace formula are not used.
It turns out that the above relations are linear and their coefficients are polynomials in $p$ which satisfy a simple
recurrence formula. The same result can be easily obtained for any Shimura variety.
This result is an intermediate step for the generalization of Kolyvagin's theorem of the finiteness of Tate – Shafarevich
group of elliptic curves of analytic rank 0 and 1 over $\mathbb Q$, to the case of submotives of other Shimura
varieties, particularly of Siegel varieties of genus 3, see [9].
The idea of the proof: on the one hand, the above formulas of Langlands – Arthur give us (conjectural) relations between
Weil numbers of a submotive. On the other hand, the Satake map permits us to transform these relations between Weil
numbers into relations between eigenvalues of $p$-Hecke operators on $X$.
The paper also contains a survey of some related questions, for example explicit finding of the Hecke polynomial for
$X$, and (Appendix) tables for the cases $g=2,3$.
@article{DVMG_2012_12_1_a5,
author = {D. Yu. Logachev},
title = {Relations between conjectural eigenvalues of {Hecke} operators on submotives of {Siegel} varieties},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {60--85},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_1_a5/}
}
TY - JOUR AU - D. Yu. Logachev TI - Relations between conjectural eigenvalues of Hecke operators on submotives of Siegel varieties JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2012 SP - 60 EP - 85 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2012_12_1_a5/ LA - en ID - DVMG_2012_12_1_a5 ER -
D. Yu. Logachev. Relations between conjectural eigenvalues of Hecke operators on submotives of Siegel varieties. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 1, pp. 60-85. http://geodesic.mathdoc.fr/item/DVMG_2012_12_1_a5/