Projection method for the solution of a problem for a
Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 1, pp. 48-59

Voir la notice de l'article provenant de la source Math-Net.Ru

This article investigates the boundary value problem for the quasilinear parabolic equation in noncylindrical domain. The existence and uniqueness are proved. The approximate solution built according to projection method. We use methods of compactness for functions from Banach space scale.
@article{DVMG_2012_12_1_a4,
     author = {K. V. Lisenkov},
     title = {Projection method for the solution of a problem for a},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {48--59},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_1_a4/}
}
TY  - JOUR
AU  - K. V. Lisenkov
TI  - Projection method for the solution of a problem for a
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2012
SP  - 48
EP  - 59
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2012_12_1_a4/
LA  - ru
ID  - DVMG_2012_12_1_a4
ER  - 
%0 Journal Article
%A K. V. Lisenkov
%T Projection method for the solution of a problem for a
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2012
%P 48-59
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2012_12_1_a4/
%G ru
%F DVMG_2012_12_1_a4
K. V. Lisenkov. Projection method for the solution of a problem for a. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 1, pp. 48-59. http://geodesic.mathdoc.fr/item/DVMG_2012_12_1_a4/