Baker~-- Akhiezer modules, Krichever sheaves, and commuting rings of partial differential operators
Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 1, pp. 20-34

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we give a review of several results about commutative subrings of partial differential operators. We show that $n$-dimensional commutative ring of partial differential operators with scalar (not matrix) coefficients (with certain mild conditions) corresponds to a Baker – Akhiezer module on the spectral algebraic variety. We also show that there is a family of coherent torsion free sheaves of special type. The existence of such sheaves gives a strong restriction on the structure of the spectral variety, in particular, it is possible to find the selfintersection index of a divisor at infinity.
@article{DVMG_2012_12_1_a2,
     author = {A. B. Zheglov and A. E. Mironov},
     title = {Baker~-- {Akhiezer} modules, {Krichever} sheaves, and commuting rings of partial differential operators},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {20--34},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2012_12_1_a2/}
}
TY  - JOUR
AU  - A. B. Zheglov
AU  - A. E. Mironov
TI  - Baker~-- Akhiezer modules, Krichever sheaves, and commuting rings of partial differential operators
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2012
SP  - 20
EP  - 34
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2012_12_1_a2/
LA  - ru
ID  - DVMG_2012_12_1_a2
ER  - 
%0 Journal Article
%A A. B. Zheglov
%A A. E. Mironov
%T Baker~-- Akhiezer modules, Krichever sheaves, and commuting rings of partial differential operators
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2012
%P 20-34
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2012_12_1_a2/
%G ru
%F DVMG_2012_12_1_a2
A. B. Zheglov; A. E. Mironov. Baker~-- Akhiezer modules, Krichever sheaves, and commuting rings of partial differential operators. Dalʹnevostočnyj matematičeskij žurnal, Tome 12 (2012) no. 1, pp. 20-34. http://geodesic.mathdoc.fr/item/DVMG_2012_12_1_a2/