On Voronoi's cylindric minima theorem
Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 2, pp. 213-221
Cet article a éte moissonné depuis la source Math-Net.Ru
Voronoi's algorithm for computing a system of fundamental units of a complex number field is based on a geometric properties of 3-dimensional lattices. This algorithm is based on Voronoi's theorem about cylindric minima for a lattice in general position. In the original proof and it's refinement published by Delone and Faddeev some significant cases were skipped. In the present we give a complete proof of Voronoi's theorem. The result is extended to arbitrary lattices.
@article{DVMG_2011_11_2_a7,
author = {A. V. Ustinov},
title = {On {Voronoi's} cylindric minima theorem},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {213--221},
year = {2011},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a7/}
}
A. V. Ustinov. On Voronoi's cylindric minima theorem. Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 2, pp. 213-221. http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a7/
[1] G. Voronoi, Ob odnom obobschenii algorifma nepreryvnykh drobei, Tipografiya Varshavskogo Uchebnogo Okruga, Varshava, 1896
[2] B. N. Delone, D. K. Faddeev, Teoriya irratsionalnostei tretei stepeni, izd-vo AN SSSR, M.–L., 1940
[3] B. N. Delone, Peterburgskaya shkola teorii chisel, izd-vo AN SSSR, M.–L., 1947
[4] A. A. Illarionov, “O tsilindricheskikh minimumakh trekhmernykh reshetok”, Dalnevost. matem. zhurn., 11:1 (2011), 48–55 | Zbl