Thermodynamically consistent system of conservation laws of nonsymmetric elasticity theory
Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 2, pp. 201-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical model of micropolar elastic medium under finite strains is reduced to a thermodynamically consistent system of conservation laws, on the basis of which can be obtained integral estimates, guaranteeing the uniqueness and continuous dependence “in the small” of solutions of the Cauchy problem and the boundary-value problems with dissipative boundary conditions, and a correct description of generalized solutions with strong discontinuities is given.
@article{DVMG_2011_11_2_a6,
     author = {V. M. Sadovskii},
     title = {Thermodynamically consistent system of conservation laws of nonsymmetric elasticity theory},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {201--212},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a6/}
}
TY  - JOUR
AU  - V. M. Sadovskii
TI  - Thermodynamically consistent system of conservation laws of nonsymmetric elasticity theory
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2011
SP  - 201
EP  - 212
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a6/
LA  - ru
ID  - DVMG_2011_11_2_a6
ER  - 
%0 Journal Article
%A V. M. Sadovskii
%T Thermodynamically consistent system of conservation laws of nonsymmetric elasticity theory
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2011
%P 201-212
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a6/
%G ru
%F DVMG_2011_11_2_a6
V. M. Sadovskii. Thermodynamically consistent system of conservation laws of nonsymmetric elasticity theory. Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 2, pp. 201-212. http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a6/

[1] E. Cosserat, F. Cosserat, “Theorie des Corps Deformables”, Chwolson's Traité Physique, 2nd ed., Paris, 1909, 953–1173

[2] V. A. Palmov, “Osnovnye uravneniya teorii nesimmetrichnoi uprugosti”, Prikl. matem. i mekhan., 28:3 (1964), 401–408 | MR

[3] V. T. Koiter, “Momentnye napryazheniya v teorii uprugosti”, Mekhanika: Sb. perevodov, 1965, no. 3, 89–112

[4] E. L. Aero, A. N. Bulygin, E. V. Kuvshinskii, “Asimmetricheskaya gidromekhanika”, Prikl. matem. i mekhan., 29:2 (1965), 297–308 | Zbl

[5] E. L. Aero, A. N. Bulygin, “Uravneniya dvizheniya nematicheskikh zhidkikh kristallov”, Prikl. matem. i mekhan., 35:5 (1971), 879–891

[6] E. L. Aero, A. N. Bulygin, “Kinematika nematicheskikh zhidkikh kristallov”, Prikl. mekhanika, VIII:3 (1972), 97–105

[7] A. G. Kalugin, Mekhanika anizotropnykh zhidkostei, Izd-vo Tsentra prikladnykh issledovanii pri mekh.-mat. f-te MGU, M., 2005

[8] V. I. Kondaurov, “O nelineinykh uravneniyakh dinamiki uprugoi mikropolyarnoi sredy”, Prikl. matem. i mekhan., 48:3 (1984), 404–413 | MR | Zbl

[9] A. E. Green, P. M. Naghdi, W. L. Wainwright, “A general theory of a Cosserat surface”, Arch. Rat. Mech. Anal., 20:4 (1965), 287–308 | DOI | MR

[10] L. I. Shkutin, Mekhanika deformatsii gibkikh tel, Nauka, Sib. otd-nie, Novosibirsk, 1988

[11] Kh. Altenbakh, P. A. Zhilin, “Obschaya teoriya uprugikh prostykh obolochek”, Uspekhi mekhaniki, 11:4 (1988), 107–148 | MR

[12] S. K. Godunov, Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl

[13] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauchnaya kniga, Novosibirsk, 1998

[14] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[15] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[16] O. V. Sadovskaya, V. M. Sadovskii, Matematicheskoe modelirovanie v zadachakh mekhaniki sypuchikh sred, Fizmatlit, M., 2008 | Zbl

[17] S. K. Godunov, I. M. Peshkov, “Simmetricheskie giperbolicheskie uravneniya nelineinoi teorii uprugosti”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1034–1055 | MR | Zbl

[18] A. G. Kulikovskii, E. I. Sveshnikova, Nelineinye volny v uprugikh sredakh, Moskovskii litsei, M., 1998

[19] V. M. Sadovskii, Razryvnye resheniya v zadachakh dinamiki uprugoplasticheskikh sred, Fizmatlit, M., 1997 | MR