The numerical solution of a non-uniform problem theory of elasticity with the curvilinear interface
Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 2, pp. 190-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper a non-uniform problem of elasticity with the curvilinear interface between materials is considered. For these decision, the domain decomposition method in a combination to approximation of a problem by a nonconforming finite element method is applied. For a received system of a linear algebraic equations the effective iterative method with a block preconditioning is constructed. The analysis of numerical experiments is carried out.
@article{DVMG_2011_11_2_a5,
     author = {A. V. Rukavishnikov},
     title = {The numerical solution of a non-uniform problem theory of elasticity with the curvilinear interface},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {190--200},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a5/}
}
TY  - JOUR
AU  - A. V. Rukavishnikov
TI  - The numerical solution of a non-uniform problem theory of elasticity with the curvilinear interface
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2011
SP  - 190
EP  - 200
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a5/
LA  - ru
ID  - DVMG_2011_11_2_a5
ER  - 
%0 Journal Article
%A A. V. Rukavishnikov
%T The numerical solution of a non-uniform problem theory of elasticity with the curvilinear interface
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2011
%P 190-200
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a5/
%G ru
%F DVMG_2011_11_2_a5
A. V. Rukavishnikov. The numerical solution of a non-uniform problem theory of elasticity with the curvilinear interface. Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 2, pp. 190-200. http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a5/

[1] Bernardi C., Maday Y., Patera A., “A New nonconforming approach to domain decomposition: the mortar element method”, Nonlinear Partial Differential Equations and their Applications, Pitman, Paris, 1994, 13–51 | MR | Zbl

[2] Braess D., Dahmen W., Wieners C., “A multigrid algorithm for the mortar finite element methods”, SIAM Journal on Numerical Analysis, 37:1 (1999), 48–69 | DOI | MR | Zbl

[3] Flemisch B., Melenk J.M., Wohlmuth B., “Mortar methods with curved interfaces”, Applied Numerical Mathematics, 54:3–4 (2005), 339–361 | DOI | MR | Zbl

[4] Huang J., Zou J., “A mortar element method for elliptic problems with discontinuous coefficients”, IMA Journal of Numerical Analysis, 22:4 (2002), 549–576 | DOI | MR | Zbl

[5] Mikhailov V.P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, Moskva, 1976, 391 pp. | MR | Zbl

[6] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, Moskva, 1980, 512 pp. | MR

[7] Rukavishnikov A.V., “O postroenii chislennogo metoda dlya zadachi Stoksa s razryvnym koeffitsientom vyazkosti”, Vychislitelnye tekhnologii, 14:2 (2009), 110–123 | Zbl

[8] Bramble J.H., Pasciak J.E. and Vassilev A.T., “Analysis of the inexact Uzawa algorithm for saddle point problems”, SIAM Journal on Numerical Analysis, 34:3 (1997), 1072–1092 | DOI | MR | Zbl

[9] Elman H.C., Golub G.H., “Inexact and preconditioned Uzawa algorithms for saddle point problems”, SIAM Journal on Numerical Analysis, 31:6 (1994), 1645–1661 | DOI | MR | Zbl

[10] Saad Y., Iterative methods for sparse linear systems, PWS, New Jersey, 1994, 450 pp.

[11] Ilin V. P., Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, Izd-vo In-ta matematiki, Novosibirsk, 2000, 345 pp. | Zbl

[12] Little L., Saad Y. and Smoch L., “Block LU preconditioners for symmetric and nonsymmetric saddle point problems”, SIAM Journal on Scientific Computing, 25:2 (2003), 729–748 | DOI | MR | Zbl

[13] Kuznetsov Yu. A., “Efficient iterative solvers for elliptic finite elements problems on nonmatching grids”, Russian Journal of Numerical Analysis and Mathematical Modelling, 10:3 (1995), 187–211 | DOI | MR | Zbl

[14] Grisvard P., Elliptic problems in nonsmooth domains, Pitman, Boston, 1985, 422 pp. | MR | Zbl