On the number of local minima of integer lattices
Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 2, pp. 149-154

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E_s(N)$ be the average number of local minima of $s$-dimensional integer lattices with determinant equals $N$. We prove the following estimates $$ \frac{2^{-1}}{(s-1)!}+O_s\left(\frac{1}{\ln N}\right)\le\frac{E_s(N)}{\ln^{s-1}N}\le\frac{2^s}{(s-1)!}+O_s\left(\frac{1}{\ln N}\right) $$ for any prime $N$. Using this result we have a new lower bound for maximum number of local minima of integer lattices.
@article{DVMG_2011_11_2_a2,
     author = {A. A. Illarionov and Y. A. Soyka},
     title = {On the number of local minima of integer lattices},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {149--154},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a2/}
}
TY  - JOUR
AU  - A. A. Illarionov
AU  - Y. A. Soyka
TI  - On the number of local minima of integer lattices
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2011
SP  - 149
EP  - 154
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a2/
LA  - ru
ID  - DVMG_2011_11_2_a2
ER  - 
%0 Journal Article
%A A. A. Illarionov
%A Y. A. Soyka
%T On the number of local minima of integer lattices
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2011
%P 149-154
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a2/
%G ru
%F DVMG_2011_11_2_a2
A. A. Illarionov; Y. A. Soyka. On the number of local minima of integer lattices. Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 2, pp. 149-154. http://geodesic.mathdoc.fr/item/DVMG_2011_11_2_a2/